Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Data Structures on Event Graphs

  • Conference paper
Algorithms – ESA 2012 (ESA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7501))

Included in the following conference series:

  • 2380 Accesses

Abstract

We investigate the behavior of data structures when the input and operations are generated by an event graph. This model is inspired by the model of Markov chains. We are given a fixed graph G, whose nodes are annotated with operations of the type insert, delete, and query. The algorithm responds to the requests as it encounters them during a (adversarial or random) walk in G. We study the limit behavior of such a walk and give an efficient algorithm for recognizing which structures can be generated. We also give a near-optimal algorithm for successor searching if the event graph is a cycle and the walk is adversarial. For a random walk, the algorithm becomes optimal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chassaing, P.: Optimality of move-to-front for self-organizing data structures with locality of references. Ann. Appl. Probab. 3(4), 1219–1240 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chazelle, B.: The discrepancy method: randomness and complexity. Cambridge University Press, New York (2000)

    MATH  Google Scholar 

  3. Chazelle, B., Mulzer, W.: Markov incremental constructions. Discrete Comput. Geom. 42(3), 399–420 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Crochemore, M., Iliopoulos, C.S., Kubica, M., Rahman, M.S., Walen, T.: Improved algorithms for the range next value problem and applications. In: Proc. 25th Sympos. Theoret. Aspects Comput. Sci (STACS), pp. 205–216 (2008)

    Google Scholar 

  5. van Emde Boas, P.: Preserving order in a forest in less than logarithmic time and linear space. Inform. Process. Lett. 6(3), 80–82 (1977)

    Article  MATH  Google Scholar 

  6. van Emde Boas, P., Kaas, R., Zijlstra, E.: Design and implementation of an efficient priority queue. Math. Systems Theory 10(2), 99–127 (1976)

    Article  MathSciNet  Google Scholar 

  7. Hotz, G.: Search trees and search graphs for Markov sources. Elektronische Informationsverarbeitung und Kybernetik 29(5), 283–292 (1993)

    MATH  Google Scholar 

  8. Kapoor, S., Reingold, E.M.: Stochastic rearrangement rules for self-organizing data structures. Algorithmica 6(2), 278–291 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Karlin, A.R., Phillips, S.J., Raghavan, P.: Markov paging. SIAM J. Comput. 30(3), 906–922 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Konneker, L.K., Varol, Y.L.: A note on heuristics for dynamic organization of data structures. Inform. Process. Lett. 12(5), 213–216 (1981)

    Article  Google Scholar 

  11. Lam, K., Leung, M.Y., Siu, M.K.: Self-organizing files with dependent accesses. J. Appl. Probab. 21(2), 343–359 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  12. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov chains and mixing times. American Mathematical Society. Providence, RI (2009)

    Google Scholar 

  13. Motwani, R., Raghavan, P.: Randomized algorithms. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  14. Mulzer, W.: A note on predecessor searching in the pointer machine model. Inform. Process. Lett. 109(13), 726–729 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Phatarfod, R.M., Pryde, A.J., Dyte, D.: On the move-to-front scheme with Markov dependent requests. J. Appl. Probab. 34(3), 790–794 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Schulz, F., Schömer, E.: Self-organizing Data Structures with Dependent Accesses. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 526–537. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  17. Shedler, G.S., Tung, C.: Locality in page reference strings. SIAM J. Comput. 1(3), 218–241 (1972)

    Article  MATH  Google Scholar 

  18. Vitter, J.S., Krishnan, P.: Optimal prefetching via data compression. J. ACM 43(5), 771–793 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chazelle, B., Mulzer, W. (2012). Data Structures on Event Graphs. In: Epstein, L., Ferragina, P. (eds) Algorithms – ESA 2012. ESA 2012. Lecture Notes in Computer Science, vol 7501. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33090-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33090-2_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33089-6

  • Online ISBN: 978-3-642-33090-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics