Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Relations on Hypergraphs

  • Conference paper
Relational and Algebraic Methods in Computer Science (RAMICS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7560))

Abstract

A relation on a hypergraph is a binary relation on the set consisting of the nodes and hyperedges together, and which satisfies a constraint involving the incidence structure of the hypergraph. These relations correspond to join-preserving mappings on the lattice of sub-hypergraphs. This paper studies the algebra of these relations, in particular the analogues of the familiar operations of complement and converse of relations. When generalizing from relations on a set to relations on a hypergraph we find that the Boolean algebra of relations is replaced by a weaker structure: a pair of isomorphic bi-Heyting algebras, one of which arises from the relations on the dual hypergraph. The paper also considers the representation of sub-hypergraphs as relations and applies the results obtained to mathematical morphology for hypergraphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bloch, I., Bretto, A.: Mathematical Morphology on Hypergraphs: Preliminary Definitions and Results. In: Debled-Rennesson, I., Domenjoud, E., Kerautret, B., Even, P. (eds.) DGCI 2011. LNCS, vol. 6607, pp. 429–440. Springer, Heidelberg (2011)

    Google Scholar 

  2. Balbes, R., Dwinger, P.: Distributive Lattices. University of Missouri Press (1974)

    Google Scholar 

  3. Bloch, I., Heijmans, H.J.A.M., Ronse, C.: Mathematical morphology. In: Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.) Handbook of Spatial Logics, ch. 14, pp. 857–944. Springer (2007)

    Google Scholar 

  4. Brown, R., Morris, I., Shrimpton, J., Wensley, C.D.: Graphs of Morphisms of Graphs. Bangor Mathematics Preprint 06.04, Mathematics Department, University of Wales, Bangor (2006)

    Google Scholar 

  5. Borceux, F.: Handbook of Categorical Algebra. Basic Category Theory, vol. 1. Cambridge University Press (1994)

    Google Scholar 

  6. Cousty, J., Najman, L., Serra, J.: Some Morphological Operators in Graph Spaces. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) ISMM 2009. LNCS, vol. 5720, pp. 149–160. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Heijmans, H., Vincent, L.: Graph Morphology in Image Analysis. In: Dougherty, E.R. (ed.) Mathematical Morphology in Image Processing, ch. 6, pp. 171–203. Marcel Dekker (1993)

    Google Scholar 

  8. Lawvere, F.W.: Introduction. In: Lawvere, F.W., Schanuel, S.H. (eds.) Categories in Continuum Physics. Lecture Notes in Mathematics, vol. 1174, pp. 1–16. Springer (1986)

    Google Scholar 

  9. Lawvere, F.W.: Intrinsic co-Heyting boundaries and the Leibniz rule in certain toposes. In: Carboni, A., et al. (eds.) Category Theory, Proceedings, Como 1990. Lecture Notes in Mathematics, vol. 1488, pp. 279–281. Springer (1991)

    Google Scholar 

  10. Mac Lane, S., Moerdijk, I.: Sheaves in Geometry and Logic. A First Introduction to Topos Theory. Springer (1992)

    Google Scholar 

  11. Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rosenthal, K.I.: Quantales and their applications. Pitman Research Notes in Mathematics, vol. 234. Longman (1990)

    Google Scholar 

  13. Schmidt, G.: Relational Mathematics. Encyclopedia of Mathematics and its Applications, vol. 132. Cambridge University Press (2011)

    Google Scholar 

  14. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London (1982)

    MATH  Google Scholar 

  15. Stell, J.G.: Relations in Mathematical Morphology with Applications to Graphs and Rough Sets. In: Winter, S., Duckham, M., Kulik, L., Kuipers, B. (eds.) COSIT 2007. LNCS, vol. 4736, pp. 438–454. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Stell, J.G.: Relational Granularity for Hypergraphs. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS (LNAI), vol. 6086, pp. 267–276. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Taylor, P.: Practical Foundations of Mathematics. Cambridge University Press (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stell, J.G. (2012). Relations on Hypergraphs. In: Kahl, W., Griffin, T.G. (eds) Relational and Algebraic Methods in Computer Science. RAMICS 2012. Lecture Notes in Computer Science, vol 7560. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33314-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33314-9_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33313-2

  • Online ISBN: 978-3-642-33314-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics