Abstract
In the last years, search-based QBF solvers have become essential for many applications in the formal methods domain. The exploitation of their reasoning efficiency has however been restricted to applications in which a “satisfiable/unsatisfiable” answer or one model of an open quantified Boolean formula suffices as an outcome, whereas applications in which a compact representation of all models is required could not be tackled with QBF solvers so far.
In this paper, we describe how computational learning provides a remedy to this problem. Our algorithms employ a search-based QBF solver and learn the set of all models of a given open QBF problem in a CNF (conjunctive normal form), DNF (disjunctive normal form), or CDNF (conjunction of DNFs) representation. We evaluate our approach experimentally using benchmarks from synthesis of finite-state systems from temporal logic and monitor computation.
This work was partly supported by the DFG as part of the AVACS Transregional Collaborative Research Center (SFB/TR 14).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic Model Checking without BDDs. In: Rance Cleaveland, W. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)
Brauer, J., King, A., Kriener, J.: Existential Quantification as Incremental SAT. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 191–207. Springer, Heidelberg (2011)
McMillan, K.L.: Applying SAT Methods in Unbounded Symbolic Model Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 250–264. Springer, Heidelberg (2002)
Brauer, J., Simon, A.: Inferring Definite Counterexamples through Under-Approximation. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 54–69. Springer, Heidelberg (2012)
Benedetti, M., Mangassarian, H.: QBF-based formal verification: Experience and perspectives. JSAT 5, 133–191 (2008)
Valiant, L.G.: A theory of the learnable. Commun. ACM 27, 1134–1142 (1984)
Giunchiglia, E., Marin, P., Narizzano, M.: QuBE7.0, System Description. JSAT 7, 83–88 (2010)
Angluin, D.: Queries and concept learning. Machine Learning 2, 319–342 (1987)
Hellerstein, L., Raghavan, V.: Exact learning of DNF formulas using DNF hypotheses. J. Comput. Syst. Sci. 70, 435–470 (2005)
Tseitin, G.S.: On the complexity of derivation in propositional calculus. Studies in Constructive Mathematics and Mathematical Logic, Part 2, 115–125 (1970)
Bshouty, N.H.: Exact learning Boolean function via the monotone theory. Inf. Comput. 123, 146–153 (1995)
Sloan, R.H., Szörényi, B., Turán, G.: Learning Boolean functions with queries. In: Crama, Y., Hammer, P.L. (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering. Cambridge University Press (2010)
Gent, I., Giunchiglia, E., Narizzano, M., Rowley, A., Tacchella, A.: Watched Data Structures for QBF Solvers. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 25–36. Springer, Heidelberg (2004)
Gent, I.P., Rowley, A.G.D.: Solution Learning and Solution Directed Backjumping Revisited. In: Technical Report APES-80-2004, APES Research Group (2004)
Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning in the evaluation of quantified Boolean formulas. Journal of Artificial Intelligence Research (JAIR) 26, 371–416 (2006)
Marin, P., Giunchiglia, E., Narizzano, M.: Conflict and solution driven constraint learning in QBF. In: Doctoral Program of Constraint Programming Conference 2010, CP 2010 (2010)
Giunchiglia, E., Marin, P., Narizzano, M.: sQueezeBF: An Effective Preprocessor for QBFs Based on Equivalence Reasoning. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 85–98. Springer, Heidelberg (2010)
Kupferschmid, S., Lewis, M., Schubert, T., Becker, B.: Incremental preprocessing methods for use in BMC. In: Int’l Workshop on Hardware Verification (2010)
Kleine-Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified Boolean formulas. Information and Computation 117, 12–18 (1995)
Ehlers, R.: Unbeast: Symbolic Bounded Synthesis. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 272–275. Springer, Heidelberg (2011)
Filiot, E., Jin, N., Raskin, J.-F.: An Antichain Algorithm for LTL Realizability. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 263–277. Springer, Heidelberg (2009)
Alur, R., Madhusudan, P., Nam, W.: Symbolic computational techniques for solving games. STTT 7, 118–128 (2005)
Biere, A., Heljanko, K., Wieringa, S., Sörensson, N.: 4th hardware model checking competition (HWCC 2011) (Affiliated with FMCAD 2011), http://fmv.jku.at/hwmcc11/
Biere, A.: Resolve and Expand. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Becker, B., Ehlers, R., Lewis, M., Marin, P. (2012). ALLQBF Solving by Computational Learning. In: Chakraborty, S., Mukund, M. (eds) Automated Technology for Verification and Analysis. ATVA 2012. Lecture Notes in Computer Science, vol 7561. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33386-6_29
Download citation
DOI: https://doi.org/10.1007/978-3-642-33386-6_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33385-9
Online ISBN: 978-3-642-33386-6
eBook Packages: Computer ScienceComputer Science (R0)