Abstract
Labeled data is often sparse in common learning scenarios, either because it is too time consuming or too expensive to obtain, while unlabeled data is almost always plentiful. This asymmetry is exacerbated in multi-label learning, where the labeling process is more complex than in the single label case. Although it is important to consider semi-supervised methods for multi-label learning, as it is in other learning scenarios, surprisingly, few proposals have been investigated for this particular problem. In this paper, we present a new semi-supervised multi-label learning method that combines large-margin multi-label classification with unsupervised subspace learning. We propose an algorithm that learns a subspace representation of the labeled and unlabeled inputs, while simultaneously training a supervised large-margin multi-label classifier on the labeled portion. Although joint training of these two interacting components might appear intractable, we exploit recent developments in induced matrix norm optimization to show that these two problems can be solved jointly, globally and efficiently. In particular, we develop an efficient training procedure based on subgradient search and a simple coordinate descent strategy. An experimental evaluation demonstrates that semi-supervised subspace learning can improve the performance of corresponding supervised multi-label learning methods.
Chapter PDF
Similar content being viewed by others
References
Joachims, T.: Text Categorization with Support Vector Machines: Learn with Many Relevant Features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, Springer, Heidelberg (1998)
McCallum, A.: Multi-label text classification with a mixture model trained by em. In: AAAI Workshop on Text Learning (1999)
Zhu, S., Ji, X., Xu, W., Gong, Y.: Multi-labelled classification using maximum entropy method. In: Conference on Information Retrieval, SIGIR (2005)
Petterson, J., Caetano, T.: Submodular multi-label learning. In: Advances in Neural Information Processing Systems, NIPS (2011)
Kazawa, H., Izumitani, T., Taira, H., Maeda, E.: Maximal margin labeling for multi-topic text categorization. In: Neural Infor. Processing Sys., NIPS (2004)
Godbole, S., Sarawagi, S.: Discriminative Methods for Multi-labeled Classification. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 22–30. Springer, Heidelberg (2004)
Hariharan, B., Zelnik-Manor, L., Vishwanathan, S., Varma, M.: Large scale max-margin multi-label classification with priors. In: Proceedings ICML (2010)
Guo, Y., Schuurmans, D.: Adaptive large margin training for multilabel classification. In: Conference on Artificial Intelligence, AAAI (2011)
Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: Advances in Neural Information Processing, NIPS (2001)
Schapire, R., Singer, Y.: Boostexter: A boosting-based system for text categorization. Machine Learning 39(2-3), 135–168 (2000)
Shalev-Shwartz, S., Singer, Y.: Efficient learning of label ranking by soft projections onto polyhedra. Journal of Machine Learning Research 7, 1567–1599 (2006)
Fuernkranz, J., Huellermeier, E., Mencia, E., Brinker, K.: Multilabel classification via calibrated label ranking. Machine Learning 73(2) (2008)
Yu, K., Yu, S., Tresp, V.: Multi-label informed latent semantic indexing. In: Conference on Research and Development in Information Retrieval, SIGIR (2005)
Yan, R., Tesic, J., Smith, J.: Model-shared subspace boosting for multi-label classification. In: Conference on Knowledge Discovery and Data Mining, KDD (2007)
Zhang, M., Zhou, Z.: Multi-label dimensionality reduction via dependency maximization. In: Conference on Artificial Intelligence, AAAI (2008)
Rai, P., Daumé III, H.: Multi-label prediction via sparse infinite CCA. In: Advances in Neural Information Processing Systems, NIPS (2009)
Kong, X., Yu, P.: Multi-label feature selection for graph classification. In: Proc. of the IEEE International Conference on Data Mining, ICDM (2010)
Ji, S., Tang, L., Yu, S., Ye, J.: A shared-subspace learning framework for multi-label classification. ACM Trans. Knowl. Discov. Data 4(2), 1–29 (2010)
Liu, Y., Jin, R., Yang, L.: Semi-supervised multi-label learning by constrained non-negative matrix factorization. In: Conf. on Artificial Intelligence, AAAI (2006)
Chen, G., Song, Y., Wang, F., Zhang, C.: Semi-supervised multi-label learning by solving a sylvester equation. In: SIAM Conference on Data Mining, SDM (2008)
Qian, B., Davidson, I.: Semi-supervised dimension reduction for multi-label classification. In: Conference on Artificial Intelligence, AAAI (2010)
Argyriou, A., Evgeniou, T., Pontil, M.: Multi-task feature learning. In: Advances in Neural Information Processing Systems, NIPS (2006)
Zhang, X., Yu, Y., White, M., Huang, R., Schuurmans, D.: Convex sparse coding, subspace learning, and semi-supervised extensions. In: Conference on Artificial Intelligence, AAAI (2011)
Lee, H., Battle, A., Raina, R., Ng, A.: Efficient sparse coding algorithms. In: Advances in Neural Information Processing Systems, NIPS (2006)
Argyriou, A., Evgeniou, T., Pontil, M.: Convex multi-task feature learning. Machine Learning 73, 243–272 (2008)
Bach, F., Mairal, J., Ponce, J.: Convex sparse matrix factorizations. arXiv:0812.1869v1 (2008)
Lee, H., Raina, R., Teichman, A., Ng, A.: Exponential family sparse coding with application to self-taught learning. In: Int. Joint Conf. Artif. Intell., IJCAI (2009)
Rish, I., Grabarnik, G., Cecchi, G., Pereira, F., Gordon, G.: Closed-form supervised dimensionality reduction with generalized linear models. In: Proc. ICML (2007)
Hendrickx, J., Olshevsky, A.: Matrix p-norms are NP-hard to approximate if p ≠ 1,2, ∞. SIAM J. Matrix Anal. Appl. 31(5), 2802–2812 (2010)
Grave, E., Obozinski, G., Bach, F.: Trace lasso: a trace norm regularization for correlated designs. In: Neural Information Processing Systems, NIPS (2011)
Ueda, N., Saito, K.: Parametric mixture models for multi-labeled text. In: Advances in Neural Information Processing Systems, NIPS (2002)
Tang, L., Rajan, S., Narayanan, V.: Large scale multi-label classification via metalabeler. In: International WWW Conference (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Guo, Y., Schuurmans, D. (2012). Semi-supervised Multi-label Classification. In: Flach, P.A., De Bie, T., Cristianini, N. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2012. Lecture Notes in Computer Science(), vol 7524. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33486-3_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-33486-3_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33485-6
Online ISBN: 978-3-642-33486-3
eBook Packages: Computer ScienceComputer Science (R0)