Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Burst Detection in a Sequence of Tweets Based on Information Diffusion Model

  • Conference paper
Discovery Science (DS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7569))

Included in the following conference series:

  • 990 Accesses

Abstract

We propose a method of detecting the period in which a burst of information diffusion took place from an observed diffusion sequence data over a social network and report the results obtained by applying it to the real Twitter data. We assume a generic information diffusion model in which time delay associated with the diffusion follows the exponential distribution and the burst is directly reflected to the changes in the time delay parameter of the distribution (inverse of the average time delay). The shape of the parameter change is approximated by a series of step functions and the problem of detecting the change points and finding the values of the parameter is formulated as an optimization problem of maximizing the likelihood of generating the observed diffusion sequence. Time complexity of the search is almost proportional to the number of observed data points (possible change points) and very efficient. We apply the method to the real Twitter data of the 2011 To-hoku earthquake and tsunami, and show that the proposed method is by far efficient than a naive method that adopts exhaustive search, and more accurate than a simple greedy method. Two interesting discoveries are that a burst period between two change points detected by the proposed method tends to contain massive homogeneous tweets on a specific topic even if the observed diffusion sequence consists of heterogeneous tweets on various topics, and that assuming the information diffusion path is a line shape tree can give a good approximation of the maximum likelihood estimator when the actual diffusion path is not known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bonacichi, P.: Power and centrality: A family of measures. Amer. J. Sociol. 92, 1170–1182 (1987)

    Article  Google Scholar 

  2. Goldenberg, J., Libai, B., Muller, E.: Talk of the network: A complex systems look at the underlying process of word-of-mouth. Marketing Letters 12, 211–223 (2001)

    Article  Google Scholar 

  3. Katz, L.: A new status index derived from sociometric analysis. Sociometry 18, 39–43 (1953)

    MATH  Google Scholar 

  4. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2003), pp. 137–146 (2003)

    Google Scholar 

  5. Kimura, M., Saito, K., Nakano, R., Motoda, H.: Extracting influential nodes on a social network for information diffusion. Data Min. Knowl. Disc. 20, 70–97 (2010)

    Article  MathSciNet  Google Scholar 

  6. Kleinberg, J.: Bursty and hierarchical structure in streams. In: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2002), pp. 91–101 (2002)

    Google Scholar 

  7. Sadikov, E., Medina, M., Leskovec, J., Garcia-Molina, H.: Correcting for missing data in information cascades. In: Proceedings of the 4th ACM International Conference on Web Search and Data Mining (WSDM 2011), pp. 55–64 (2011)

    Google Scholar 

  8. Saito, K., Kimura, M., Ohara, K., Motoda, H.: Learning Continuous-Time Information Diffusion Model for Social Behavioral Data Analysis. In: Zhou, Z.-H., Washio, T. (eds.) ACML 2009. LNCS (LNAI), vol. 5828, pp. 322–337. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Saito, K., Kimura, M., Ohara, K., Motoda, H.: Selecting Information Diffusion Models over Social Networks for Behavioral Analysis. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part III. LNCS (LNAI), vol. 6323, pp. 180–195. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Sun, A., Zeng, D., Chen, H.: Burst detection from multiple data streams: A network-based approach. IEEE Transactions on Systems, Man, & Cybernetics Society, Part C, 258–267 (2010)

    Google Scholar 

  11. Wasserman, S., Faust, K.: Social network analysis. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  12. Watts, D.J.: A simple model of global cascades on random networks. Proceedings of National Academy of Science, USA 99, 5766–5771 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Watts, D.J., Dodds, P.S.: Influence, networks, and public opinion formation. Journal of Consumer Research 34, 441–458 (2007)

    Article  Google Scholar 

  14. Zhu, Y., Shasha, D.: Efficient elastic burst detection in data streams. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2003), pp. 336–345 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Saito, K., Ohara, K., Kimura, M., Motoda, H. (2012). Burst Detection in a Sequence of Tweets Based on Information Diffusion Model. In: Ganascia, JG., Lenca, P., Petit, JM. (eds) Discovery Science. DS 2012. Lecture Notes in Computer Science(), vol 7569. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33492-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33492-4_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33491-7

  • Online ISBN: 978-3-642-33492-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics