Abstract
A self-stabilizing protocol is guaranteed to eventually reach a safe (or legitimate) configuration even when started from an arbitrary configuration. Most of self-stabilizing protocols require each process to keep communicating with all of its neighbors forever even after reaching a safe configuration. Such permanent communication impairs efficiency, but is necessary in nature of self-stabilization.
The concept of communication-efficiency was introduced to reduce communication after reaching a safe configuration. The previous concept targets the point-to-point communication model, and is not appropriate to the wireless network model where a process can locally broadcast a message to its neighbors all at once.
In this paper, we refine the concept of the communication-efficiency for the wireless network model, and investigate its possibility in self-stabilization for some fundamental problems; the minimal (connected) dominating set problem, the maximal independent set problem, and the spanning tree construction problem.
This work is supported in part by Grant-in-Aid for Scientific Research ((B)20300012. (B)22300009, (B)23700056, (C)24500039) of JSPS.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dolev, S.: Self-stabilization. The MIT press (2000)
Devismes, S., Masuzawa, T., Tixeuil, S.: Communication efficiency in self-stabilizing silent protocols. In: Proc. of IEEE ICDCS, pp. 474–481 (2009)
Masuzawa, T., Izumi, T., Katayama, Y., Wada, K.: Brief Announcement: Communication-Efficient Self-stabilizing Protocols for Spanning-Tree Construction. In: Abdelzaher, T., Raynal, M., Santoro, N. (eds.) OPODIS 2009. LNCS, vol. 5923, pp. 219–224. Springer, Heidelberg (2009)
Masuzawa, T.: Silence Is Golden: Self-stabilizing Protocols Communication-Efficient after Convergence. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp. 1–3. Springer, Heidelberg (2011)
Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Stable Leader Election. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 108–122. Springer, Heidelberg (2001)
Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: On implementing omega with weak reliability and synchrony assumptions. In: Proc. of PODC, pp. 306–314 (2003)
Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Communication-efficient leader election and consensus with limited link synchrony. In: Proc. of PODC, pp. 328–337 (2004)
Biely, M., Widder, J.: Optimal message-driven implementations of omega with mute processes. ACM TAAS 4(1), 4:1–4:22 (2009)
Larrea, M., Fernández, A., Arévalo, S.: Optimal implementation of the weakest failure detector for solving consensus. In: Proc. of SRDS, pp. 52–59 (2000)
Dolev, S., Schiller, E.: Communication adaptive self-stabilizing group membership service. IEEE TPDS 14(7), 709–720 (2003)
Kutten, S., Zinenko, D.: Low Communication Self-stabilization through Randomization. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 465–479. Springer, Heidelberg (2010)
Ikeda, M., Kamei, S., Kakugawa, H.: A space-optimal self-stabilizing algorithm for the maximal independent set problem. In: Proc. of PDCAT, pp. 70–74 (2002)
Arora, A., Gouda, M.G.: Distributed Reset. IEEE Trans. Comp. 43(9), 1026–1038 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Takimoto, T., Ooshita, F., Kakugawa, H., Masuzawa, T. (2012). Communication-Efficient Self-stabilization in Wireless Networks. In: Richa, A.W., Scheideler, C. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2012. Lecture Notes in Computer Science, vol 7596. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33536-5_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-33536-5_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33535-8
Online ISBN: 978-3-642-33536-5
eBook Packages: Computer ScienceComputer Science (R0)