Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Boosting Local Consistency Algorithms over Floating-Point Numbers

  • Conference paper
Principles and Practice of Constraint Programming (CP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7514))

  • 2314 Accesses

Abstract

Solving constraints over floating-point numbers is a critical issue in numerous applications notably in program verification. Capabilities of filtering algorithms over the floating-point numbers (\(\mathcal{F}\)) have been so far limited to 2b-consistency and its derivatives. Though safe, such filtering techniques suffer from the well known pathological problems of local consistencies, e.g., inability to efficiently handle multiple occurrences of the variables. These limitations also have their origins in the strongly restricted floating-point arithmetic. To circumvent the poor properties of floating-point arithmetic, we propose in this paper a new filtering algorithm, called FPLP, which relies on various relaxations over the real numbers of the problem over \(\mathcal{F}\). Safe bounds of the domains are computed with a mixed integer linear programming solver (MILP) on safe linearizations of these relaxations. Preliminary experiments on a relevant set of benchmarks are promising and show that this approach can be effective for boosting local consistency algorithms over \(\mathcal{F}\).

This work was partially supported by ANR VACSIM (ANR-11-INSE-0004), ANR AEOLUS (ANR-10-SEGI-0013) and OSEO ISI PAJERO projects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Al-Khayyal, F.A., Falk, J.E.: Jointly constrained biconvex programming. Mathematics of Operations Research 8(2), 273–286 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  2. Armando, A., Mantovani, J., Platania, L.: Bounded model checking of software using SMT solvers instead of SAT solvers. Int. J. Softw. Tools Technol. Transf. 11, 69–83 (2009)

    Article  Google Scholar 

  3. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic Model Checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  4. Borradaile, G., Van Hentenryck, P.: Safe and tight linear estimators for global optimization. Mathematical Programming (2005)

    Google Scholar 

  5. Botella, B., Gotlieb, A., Michel, C.: Symbolic execution of floating-point computations. Softw. Test., Verif. Reliab. 16(2), 97–121 (2006)

    Article  Google Scholar 

  6. Brillout, A., Kroening, D., Wahl, T.: Mixed abstractions for floating-point arithmetic. In: Proceedings of FMCAD 2009, pp. 69–76. IEEE (2009)

    Google Scholar 

  7. Chen, L., Miné, A., Cousot, P.: A Sound Floating-Point Polyhedra Abstract Domain. In: Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 3–18. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Collavizza, H., Rueher, M., Hentenryck, P.: CPBPV: a constraint-programming framework for bounded program verification. Constraints 15(2), 238–264 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-based bounded model checking for embedded ANSI-C software. IEEE Transactions on Software Engineering (May 2011)

    Google Scholar 

  10. Cousot, P., Cousot, R., Feret, J., Miné, A., Mauborgne, L., Monniaux, D., Rival, X.: Varieties of static analyzers: A comparison with astree. In: TASE 2007, pp. 3–20. IEEE (2007)

    Google Scholar 

  11. Ganai, M.K., Gupta, A.: Accelerating high-level bounded model checking. In: Proceedings of the 2006 IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2006, pp. 794–801. ACM, New York (2006)

    Google Scholar 

  12. Ghorbal, K., Goubault, E., Putot, S.: A Logical Product Approach to Zonotope Intersection. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 212–226. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Gotlieb, A., Botella, B., Rueher, M.: Automatic test data generation using constraint solving techniques. In: ISSTA, pp. 53–62 (1998)

    Google Scholar 

  14. Gotlieb, A., Botella, B., Rueher, M.: A CLP Framework for Computing Structural Test Data. In: Lloyd, J., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Palamidessi, C., Pereira, L.M., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 399–413. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  15. Lebbah, Y., Michel, C., Rueher, M., Daney, D., Merlet, J.-P.: Efficient and safe global constraints for handling numerical constraint systems. SIAM J. Numer. Anal. 42, 2076–2097 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lhomme, O.: Consistency techniques for numeric CSPs. In: IJCAI, pp. 232–238 (1993)

    Google Scholar 

  17. Marre, B., Michel, C.: Improving the Floating Point Addition and Subtraction Constraints. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 360–367. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs – part i – convex underestimating problems. Mathematical Programming 10, 147–175 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  19. Michel, C., Lebbah, Y., Rueher, M.: Safe embedding of the simplex algorithm in a CSP framework. In: Proc. of CPAIOR 2003, CRT, Université de Montréal, pp. 210–220 (2003)

    Google Scholar 

  20. Michel, C.: Exact projection functions for floating point number constraints. In: AMAI (2002)

    Google Scholar 

  21. Michel, C., Rueher, M., Lebbah, Y.: Solving Constraints over Floating-Point Numbers. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 524–538. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  22. Miné, A.: Weakly Relational Numerical Abstract Domains. PhD thesis, École Polytechnique, Palaiseau, France (December 2004)

    Google Scholar 

  23. Neumaier, A., Shcherbina, O.: Safe bounds in linear and mixed-integer programming. Math. Programming A 99, 283–296 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ryoo, H.S., Sahinidis, N.V.: A branch-and-reduce approach to global optimization. Journal of Global Optimization, 107–138 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Belaid, M.S., Michel, C., Rueher, M. (2012). Boosting Local Consistency Algorithms over Floating-Point Numbers. In: Milano, M. (eds) Principles and Practice of Constraint Programming. CP 2012. Lecture Notes in Computer Science, vol 7514. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33558-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33558-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33557-0

  • Online ISBN: 978-3-642-33558-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics