Abstract
Solving constraints over floating-point numbers is a critical issue in numerous applications notably in program verification. Capabilities of filtering algorithms over the floating-point numbers (\(\mathcal{F}\)) have been so far limited to 2b-consistency and its derivatives. Though safe, such filtering techniques suffer from the well known pathological problems of local consistencies, e.g., inability to efficiently handle multiple occurrences of the variables. These limitations also have their origins in the strongly restricted floating-point arithmetic. To circumvent the poor properties of floating-point arithmetic, we propose in this paper a new filtering algorithm, called FPLP, which relies on various relaxations over the real numbers of the problem over \(\mathcal{F}\). Safe bounds of the domains are computed with a mixed integer linear programming solver (MILP) on safe linearizations of these relaxations. Preliminary experiments on a relevant set of benchmarks are promising and show that this approach can be effective for boosting local consistency algorithms over \(\mathcal{F}\).
This work was partially supported by ANR VACSIM (ANR-11-INSE-0004), ANR AEOLUS (ANR-10-SEGI-0013) and OSEO ISI PAJERO projects.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Al-Khayyal, F.A., Falk, J.E.: Jointly constrained biconvex programming. Mathematics of Operations Research 8(2), 273–286 (1983)
Armando, A., Mantovani, J., Platania, L.: Bounded model checking of software using SMT solvers instead of SAT solvers. Int. J. Softw. Tools Technol. Transf. 11, 69–83 (2009)
Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic Model Checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)
Borradaile, G., Van Hentenryck, P.: Safe and tight linear estimators for global optimization. Mathematical Programming (2005)
Botella, B., Gotlieb, A., Michel, C.: Symbolic execution of floating-point computations. Softw. Test., Verif. Reliab. 16(2), 97–121 (2006)
Brillout, A., Kroening, D., Wahl, T.: Mixed abstractions for floating-point arithmetic. In: Proceedings of FMCAD 2009, pp. 69–76. IEEE (2009)
Chen, L., Miné, A., Cousot, P.: A Sound Floating-Point Polyhedra Abstract Domain. In: Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 3–18. Springer, Heidelberg (2008)
Collavizza, H., Rueher, M., Hentenryck, P.: CPBPV: a constraint-programming framework for bounded program verification. Constraints 15(2), 238–264 (2010)
Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-based bounded model checking for embedded ANSI-C software. IEEE Transactions on Software Engineering (May 2011)
Cousot, P., Cousot, R., Feret, J., Miné, A., Mauborgne, L., Monniaux, D., Rival, X.: Varieties of static analyzers: A comparison with astree. In: TASE 2007, pp. 3–20. IEEE (2007)
Ganai, M.K., Gupta, A.: Accelerating high-level bounded model checking. In: Proceedings of the 2006 IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2006, pp. 794–801. ACM, New York (2006)
Ghorbal, K., Goubault, E., Putot, S.: A Logical Product Approach to Zonotope Intersection. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 212–226. Springer, Heidelberg (2010)
Gotlieb, A., Botella, B., Rueher, M.: Automatic test data generation using constraint solving techniques. In: ISSTA, pp. 53–62 (1998)
Gotlieb, A., Botella, B., Rueher, M.: A CLP Framework for Computing Structural Test Data. In: Lloyd, J., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Palamidessi, C., Pereira, L.M., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 399–413. Springer, Heidelberg (2000)
Lebbah, Y., Michel, C., Rueher, M., Daney, D., Merlet, J.-P.: Efficient and safe global constraints for handling numerical constraint systems. SIAM J. Numer. Anal. 42, 2076–2097 (2005)
Lhomme, O.: Consistency techniques for numeric CSPs. In: IJCAI, pp. 232–238 (1993)
Marre, B., Michel, C.: Improving the Floating Point Addition and Subtraction Constraints. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 360–367. Springer, Heidelberg (2010)
McCormick, G.P.: Computability of global solutions to factorable nonconvex programs – part i – convex underestimating problems. Mathematical Programming 10, 147–175 (1976)
Michel, C., Lebbah, Y., Rueher, M.: Safe embedding of the simplex algorithm in a CSP framework. In: Proc. of CPAIOR 2003, CRT, Université de Montréal, pp. 210–220 (2003)
Michel, C.: Exact projection functions for floating point number constraints. In: AMAI (2002)
Michel, C., Rueher, M., Lebbah, Y.: Solving Constraints over Floating-Point Numbers. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 524–538. Springer, Heidelberg (2001)
Miné, A.: Weakly Relational Numerical Abstract Domains. PhD thesis, École Polytechnique, Palaiseau, France (December 2004)
Neumaier, A., Shcherbina, O.: Safe bounds in linear and mixed-integer programming. Math. Programming A 99, 283–296 (2004)
Ryoo, H.S., Sahinidis, N.V.: A branch-and-reduce approach to global optimization. Journal of Global Optimization, 107–138 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Belaid, M.S., Michel, C., Rueher, M. (2012). Boosting Local Consistency Algorithms over Floating-Point Numbers. In: Milano, M. (eds) Principles and Practice of Constraint Programming. CP 2012. Lecture Notes in Computer Science, vol 7514. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33558-7_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-33558-7_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33557-0
Online ISBN: 978-3-642-33558-7
eBook Packages: Computer ScienceComputer Science (R0)