Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Parallel SAT Solver Selection and Scheduling

  • Conference paper
Principles and Practice of Constraint Programming (CP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7514))

Abstract

Combining differing solution approaches by means of solver portfolios has proven as a highly effective technique for boosting solver performance. We consider the problem of generating parallel SAT solver portfolios. Our approach is based on a recently introduced sequential SAT solver portfolio that excelled at the last SAT competition. We show how the approach can be generalized for the parallel case, and how obstacles like parallel SAT solvers and symmetries induced by identical processors can be overcome. We compare different ways of computing parallel solver portfolios with the best performing parallel SAT approaches to date. Extensive experimental results show that the developed methodology very significantly improves our current parallel SAT solving capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. SAT Competition, http://www.satcomptition.org

  2. Biere, A.: Lingeling, plingeling, picosat and precosat at sat race 2010. Technical report, Johannes Kepler University, Linz, Austria (2010)

    Google Scholar 

  3. Biere, A.: Lingeling and friends at the sat competition 2011. Technical report, Johannes Kepler University, Altenbergerstr. 69, 4040 Linz, Austria (2011)

    Google Scholar 

  4. Dantzig, G.: Linear programming and extensions. Princeton University Press, Princeton (1963)

    MATH  Google Scholar 

  5. Een, N., Sorensson, N.: An extensible sat-solver [ver 1.2] (2003)

    Google Scholar 

  6. Hamadi, Y., Jabbour, S., Lakhdar, S.: Manysat: a parallel sat solver. Journal on Satisfiability, Boolean Modeling and Computation 6, 245–262 (2009)

    MATH  Google Scholar 

  7. Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algorithm Selection and Scheduling. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 454–469. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-based reasoning in an algorithm portfolio for constraint solving. In: Irish Conference on Artificial Intelligence and Cognitive Science (2008)

    Google Scholar 

  9. Petrik, M., Zilberstein, S.: Learning static parallel portfolios of algorithms. In: Ninth International Symposium on Artificial Intelligence and Mathematics (2006)

    Google Scholar 

  10. Roussel, O.: Description of ppfolio (2011), http://www.cril.univ-artois.fr/~roussel/ppfolio/solver1.pdf

  11. Soos, M.: Cryptominisat 2.9.0 (2011)

    Google Scholar 

  12. Stern, D., Samulowitz, H., Herbrich, R., Graepel, T., Pulina, L., Tacchella, A.: Collaborative expert portfolio management. In: AAAI (2010)

    Google Scholar 

  13. Streeter, M., Smith, S.: Using decision procedures efficiently for optimization. In: ICAPS, pp. 312–319 (2007)

    Google Scholar 

  14. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: Satzilla: Portfolio-based algorithm selection for sat. JAIR 32(1), 565–606 (2008)

    MATH  Google Scholar 

  15. Yun, X., Epstein, S.: Learning algorithm portfolios for parallel execution. In: Workshop on Learning and Intelligent Optimization (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M. (2012). Parallel SAT Solver Selection and Scheduling. In: Milano, M. (eds) Principles and Practice of Constraint Programming. CP 2012. Lecture Notes in Computer Science, vol 7514. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33558-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33558-7_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33557-0

  • Online ISBN: 978-3-642-33558-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics