Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Implicit Inter-subject Shape Driven Image Deformation Model for Prostate Motion Estimation

  • Conference paper
Abdominal Imaging. Computational and Clinical Applications (ABD-MICCAI 2012)

Abstract

This paper describes a novel approach for model based estimation of a dense deformation field utilizing an implicit representation of shape changes. Unlike existing methods based on the Point Distribution Model (PDM), the proposed method is not affected by an incorrect point correspondence which is a major limiting factor in practical applications of the PDM with clinical data. The proposed method uses regression between parametric representations of pelvic organs’ shape and corresponding dense displacement field parameterized by the stationary vector field. The regression function is learned based on the training data sets including subjects with representative organ deformations, where the inter- and intra- subject correspondences are established via the log-Euclidean diffeomorphic formulation. The evaluation of the proposed method is conducted both on synthetic examples to provide systematic experimental evidence of correctness of the implicit shape representation for shape-driven prediction of the deformation field and, real MRI data to show accuracy in terms of deformation and prostate position prediction. The results show an increased robustness of the proposed framework in comparison to PDM approaches and suggest potential of its application for adaptive radiation therapy of prostate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Albrecht, T., Lüthi, M., Vetter, T.: A statistical deformation prior for non-rigid image and shape registration. In: Proc. IEEE CVPR 2008, pp. 1–8 (2008)

    Google Scholar 

  2. Arsigny, V., Commowick, O., Pennec, X., Ayache, N.: A Log-Euclidean Framework for Statistics on Diffeomorphisms. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006, Part I. LNCS, vol. 4190, pp. 924–931. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Bossa, M., Hernandez, M., Olmos, S.: Contributions to 3D Diffeomorphic Atlas Estimation: Application to Brain Images. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 667–674. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Ehrhardt, J., Werner, R., Schmidt-Richberg, A., Handels, H.: Statistical modeling of 4d respiratory lung motion using diffeomorphic image registration. IEEE Trans. Med. Imag. 30(2), 251–265 (2011), http://dx.doi.org/10.1109/TMI.2010.2076299

    Article  Google Scholar 

  5. Geng, X., Christensen, G., Gu, H., Ross, T., Yang, Y.: Implicit reference-based group-wise image registration and its application to structural and functional mri. Neuroimage 47(4), 1341–1351 (2009), http://dx.doi.org/10.1016/j.neuroimage.2009.04.024

    Article  Google Scholar 

  6. Huang, X., Paragios, N., Metaxas, D.: Shape registration in implicit spaces using information theory and free form deformations. IEEE T-PAMI 28(8), 1303 (2006)

    Article  Google Scholar 

  7. Lambert, J., Greer, P., Menk, F., Patterson, J., et al.: MRI-guided prostate radiation therapy planning: Investigation of dosimetric accuracy of MRI-based dose planning. Radiother. Oncol. 98(3), 330–334 (2011), http://dx.doi.org/10.1016/j.radonc.2011.01.012

    Article  Google Scholar 

  8. Liu, X., Davis, B., Niethammer, M., Pizer, S., Mageras, G.: Prediction-driven respiratory motion atlas formation for 4d image- guided radiation therapy in lung. In: MICCAI 2010 Pulmonary Image Analysis Workshop (2010)

    Google Scholar 

  9. Liu, X., Saboo, R., Pizer, S., Mageras, G.: A shape-navigated image deformation model for 4d lung respiratory motion estimation. In: Proc. ISBI, pp. 875–878 (2009), http://dx.doi.org/10.1109/ISBI.2009.5193192

  10. Maurer, C., Qi, R., Raghavan, V.: A linear time algorithm for computing exact euclidean distance transforms of binary images in arbitrary dimensions. IEEE T-PAMI 25(2), 265–270 (2003)

    Article  Google Scholar 

  11. Mountney, P., Yang, G.-Z.: Motion Compensated SLAM for Image Guided Surgery. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part II. LNCS, vol. 6362, pp. 496–504. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Papiez, B.W., Matuszewski, B.J., Shark, L.K., Quan, W.: Facial expression recognition using log-euclidean statisitical shape models. In: Proc. ICPRAM (2012)

    Google Scholar 

  13. Pohl, K.M., Fisher, J., Shenton, M.E., McCarley, R.W., Grimson, W.E.L., Kikinis, R., Wells, W.M.: Logarithm Odds Maps for Shape Representation. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006, Part II. LNCS, vol. 4191, pp. 955–963. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Price, G., Moore, C.: Comparative evaluation of a novel 3d segmentation algorithm on in-treatment radiotherapy cone beam ct images. In: Proceedings of the SPIE Conference on Medical Imaging, vol. 6512(3), pp. 38.1–38.11 (2007)

    Google Scholar 

  15. Rueckert, D., Frangi, A., Schnabel, J.: Automatic construction of 3-d statistical deformation models of the brain using nonrigid registration. IEEE Trans. Med. Imag. 22(8), 1014–1025 (2003), http://dx.doi.org/10.1109/TMI.2003.815865

    Article  Google Scholar 

  16. Shi, Y., Liao, S., Shen, D.: Learning statistical correlation for fast prostate registration in image-guided radiotherapy. Med. Phys. 38(11), 5980–5991 (2011), http://dx.doi.org/10.1118/1.3641645

    Article  Google Scholar 

  17. Söhn, M., Birkner, M., Yan, D., Alber, M.: Modelling individual geometric variation based on dominant eigenmodes of organ deformation: implementation and evaluation. Phys. Med. Biol. 50(24), 5893–5908 (2005), http://dx.doi.org/10.1088/0031-9155/50/24/009

    Article  Google Scholar 

  18. Tsai, A., Yezzi Jr., A., Wells, W., Tempany, C., Tucker, D., Fan, A., Grimson, W.E., Willsky, A.: A shape-based approach to the segmentation of medical imagery using level sets. IEEE Trans. Med. Imag. 22(2), 137–154 (2003)

    Article  Google Scholar 

  19. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Symmetric Log-Domain Diffeomorphic Registration: A Demons-Based Approach. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 754–761. Springer, Heidelberg (2008), http://dx.doi.org/10.1007/978-3-540-85988-8_90

    Chapter  Google Scholar 

  20. Zhang, Q., Pevsner, A., Hertanto, A., Hu, Y., Rosenzweig, K., Ling, C., Mageras, G.: A patient-specific respiratory model of anatomical motion for radiation treatment planning. Med. Phys. 34(12), 4772–4781 (2007)

    Article  Google Scholar 

  21. Zhang, Y., Matuszewski, B., Histace, A., Precioso, F., Kilgallon, J., Moore, C.: Boundary delineation in prostate imaging using active contour segmentation method with interactively defined object regions. In: MICCAI 2010 Prostate Cancer Imaging Workshop. pp. 131–142 (2010), http://portal.acm.org/citation.cfm?id=1889234.1889249

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Papiez, B.W., Matuszewski, B.J., Shark, LK., Moore, C. (2012). An Implicit Inter-subject Shape Driven Image Deformation Model for Prostate Motion Estimation. In: Yoshida, H., Hawkes, D., Vannier, M.W. (eds) Abdominal Imaging. Computational and Clinical Applications. ABD-MICCAI 2012. Lecture Notes in Computer Science, vol 7601. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33612-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33612-6_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33611-9

  • Online ISBN: 978-3-642-33612-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics