Abstract
This paper describes a novel approach for model based estimation of a dense deformation field utilizing an implicit representation of shape changes. Unlike existing methods based on the Point Distribution Model (PDM), the proposed method is not affected by an incorrect point correspondence which is a major limiting factor in practical applications of the PDM with clinical data. The proposed method uses regression between parametric representations of pelvic organs’ shape and corresponding dense displacement field parameterized by the stationary vector field. The regression function is learned based on the training data sets including subjects with representative organ deformations, where the inter- and intra- subject correspondences are established via the log-Euclidean diffeomorphic formulation. The evaluation of the proposed method is conducted both on synthetic examples to provide systematic experimental evidence of correctness of the implicit shape representation for shape-driven prediction of the deformation field and, real MRI data to show accuracy in terms of deformation and prostate position prediction. The results show an increased robustness of the proposed framework in comparison to PDM approaches and suggest potential of its application for adaptive radiation therapy of prostate.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Albrecht, T., Lüthi, M., Vetter, T.: A statistical deformation prior for non-rigid image and shape registration. In: Proc. IEEE CVPR 2008, pp. 1–8 (2008)
Arsigny, V., Commowick, O., Pennec, X., Ayache, N.: A Log-Euclidean Framework for Statistics on Diffeomorphisms. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006, Part I. LNCS, vol. 4190, pp. 924–931. Springer, Heidelberg (2006)
Bossa, M., Hernandez, M., Olmos, S.: Contributions to 3D Diffeomorphic Atlas Estimation: Application to Brain Images. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 667–674. Springer, Heidelberg (2007)
Ehrhardt, J., Werner, R., Schmidt-Richberg, A., Handels, H.: Statistical modeling of 4d respiratory lung motion using diffeomorphic image registration. IEEE Trans. Med. Imag. 30(2), 251–265 (2011), http://dx.doi.org/10.1109/TMI.2010.2076299
Geng, X., Christensen, G., Gu, H., Ross, T., Yang, Y.: Implicit reference-based group-wise image registration and its application to structural and functional mri. Neuroimage 47(4), 1341–1351 (2009), http://dx.doi.org/10.1016/j.neuroimage.2009.04.024
Huang, X., Paragios, N., Metaxas, D.: Shape registration in implicit spaces using information theory and free form deformations. IEEE T-PAMIÂ 28(8), 1303 (2006)
Lambert, J., Greer, P., Menk, F., Patterson, J., et al.: MRI-guided prostate radiation therapy planning: Investigation of dosimetric accuracy of MRI-based dose planning. Radiother. Oncol. 98(3), 330–334 (2011), http://dx.doi.org/10.1016/j.radonc.2011.01.012
Liu, X., Davis, B., Niethammer, M., Pizer, S., Mageras, G.: Prediction-driven respiratory motion atlas formation for 4d image- guided radiation therapy in lung. In: MICCAI 2010 Pulmonary Image Analysis Workshop (2010)
Liu, X., Saboo, R., Pizer, S., Mageras, G.: A shape-navigated image deformation model for 4d lung respiratory motion estimation. In: Proc. ISBI, pp. 875–878 (2009), http://dx.doi.org/10.1109/ISBI.2009.5193192
Maurer, C., Qi, R., Raghavan, V.: A linear time algorithm for computing exact euclidean distance transforms of binary images in arbitrary dimensions. IEEE T-PAMI 25(2), 265–270 (2003)
Mountney, P., Yang, G.-Z.: Motion Compensated SLAM for Image Guided Surgery. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part II. LNCS, vol. 6362, pp. 496–504. Springer, Heidelberg (2010)
Papiez, B.W., Matuszewski, B.J., Shark, L.K., Quan, W.: Facial expression recognition using log-euclidean statisitical shape models. In: Proc. ICPRAM (2012)
Pohl, K.M., Fisher, J., Shenton, M.E., McCarley, R.W., Grimson, W.E.L., Kikinis, R., Wells, W.M.: Logarithm Odds Maps for Shape Representation. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006, Part II. LNCS, vol. 4191, pp. 955–963. Springer, Heidelberg (2006)
Price, G., Moore, C.: Comparative evaluation of a novel 3d segmentation algorithm on in-treatment radiotherapy cone beam ct images. In: Proceedings of the SPIE Conference on Medical Imaging, vol. 6512(3), pp. 38.1–38.11 (2007)
Rueckert, D., Frangi, A., Schnabel, J.: Automatic construction of 3-d statistical deformation models of the brain using nonrigid registration. IEEE Trans. Med. Imag. 22(8), 1014–1025 (2003), http://dx.doi.org/10.1109/TMI.2003.815865
Shi, Y., Liao, S., Shen, D.: Learning statistical correlation for fast prostate registration in image-guided radiotherapy. Med. Phys. 38(11), 5980–5991 (2011), http://dx.doi.org/10.1118/1.3641645
Söhn, M., Birkner, M., Yan, D., Alber, M.: Modelling individual geometric variation based on dominant eigenmodes of organ deformation: implementation and evaluation. Phys. Med. Biol. 50(24), 5893–5908 (2005), http://dx.doi.org/10.1088/0031-9155/50/24/009
Tsai, A., Yezzi Jr., A., Wells, W., Tempany, C., Tucker, D., Fan, A., Grimson, W.E., Willsky, A.: A shape-based approach to the segmentation of medical imagery using level sets. IEEE Trans. Med. Imag. 22(2), 137–154 (2003)
Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Symmetric Log-Domain Diffeomorphic Registration: A Demons-Based Approach. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 754–761. Springer, Heidelberg (2008), http://dx.doi.org/10.1007/978-3-540-85988-8_90
Zhang, Q., Pevsner, A., Hertanto, A., Hu, Y., Rosenzweig, K., Ling, C., Mageras, G.: A patient-specific respiratory model of anatomical motion for radiation treatment planning. Med. Phys. 34(12), 4772–4781 (2007)
Zhang, Y., Matuszewski, B., Histace, A., Precioso, F., Kilgallon, J., Moore, C.: Boundary delineation in prostate imaging using active contour segmentation method with interactively defined object regions. In: MICCAI 2010 Prostate Cancer Imaging Workshop. pp. 131–142 (2010), http://portal.acm.org/citation.cfm?id=1889234.1889249
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Papiez, B.W., Matuszewski, B.J., Shark, LK., Moore, C. (2012). An Implicit Inter-subject Shape Driven Image Deformation Model for Prostate Motion Estimation. In: Yoshida, H., Hawkes, D., Vannier, M.W. (eds) Abdominal Imaging. Computational and Clinical Applications. ABD-MICCAI 2012. Lecture Notes in Computer Science, vol 7601. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33612-6_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-33612-6_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33611-9
Online ISBN: 978-3-642-33612-6
eBook Packages: Computer ScienceComputer Science (R0)