Abstract
Bloom filters are probabilistic data structures which permit to conveniently represent set membership. Their performance/memory efficiency makes them appealing in a huge variety of scenarios. Their probabilistic operation, along with the implicit data representation, yields some ambiguity on the actual data stored, which, in scenarios where cryptographic protection is unviable or unpractical, may be somewhat considered as a better than nothing privacy asset. Oddly enough, even if frequently mentioned, to the best of our knowledge the (soft) privacy properties of Bloom filters have never been explicitly quantified. This work aims to fill this gap. Starting from the adaptation of probabilistic anonymity metrics to the Bloom filter setting, we derive exact and (tightly) approximate formulae which permit to readily relate privacy properties with filter (and universe set) parameters. Using such relations, we quantitatively investigate the emerging privacy/utility trade-offs. We finally preliminary assess the advantages that a tailored insertion of a few extra (covert) bits achieves over the commonly employed strategy of increasing ambiguity via addition of random bits.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7), 422–426 (1970)
Stonebraker, M., Keller, K.: Embedding expert knowledge and hypothetical data bases into a data base system. In: Proc. of the 1980 ACM SIGMOD Int. Conf. on Management of Data, pp. 58–66 (1980)
Maryanski, F.J.: An architecture for fault tolerance in database systems. In: Proceedings of the ACM 1980 Annual Conference, pp. 389–398. ACM (1980)
Gremillion, L.L.: Designing a bloom filter for differential file access. Commun. ACM 25(9), 600–604 (1982)
Mullin, J.K.: Accessing textual documents using compressed indexes of arrays of small bloom filters. Comput. J. 30(4), 343–348 (1987)
Broder, A., Mitzenmacher, M.: Network applications of bloom filters: A survey. In: Internet Mathematics, pp. 636–646 (2002)
Cai, H., Ge, P., Wang, J.: Applications of bloom filters in peer-to-peer systems: Issues and questions. In: Proceedings of the 2008 Int. Conf. on Networking, Architecture, and Storage, NAS 2008, pp. 97–103 (2008)
Tarkoma, S., Rothenberg, C., Lagerspetz, E.: Theory and practice of bloom filters for distributed systems. IEEE Communications Surveys Tutorials 14(1), 131–155 (2012)
Stranneheim, H., Kaller, M., Allander, T., Andersson, B., Arvestad, L., Lundeberg, J.: Classification of dna sequences using bloom filters. Bioinformatics 26(13), 1595–1600 (2010)
Bellovin, S.M., Cheswick, W.R.: Privacy-enhanced searches using encrypted bloom filters. IACR Cryptology ePrint Archive, 22 (2004)
Raykova, M., Vo, B., Bellovin, S.M., Malkin, T.: Secure anonymous database search. In: Proc. of the 2009 ACM Workshop on Cloud Computing Security, CCSW 2009, pp. 115–126 (2009)
Goh, E.J.: Secure indexes. Cryptology ePrint Archive, Report 2003/216 (2003), http://eprint.iacr.org/2003/216/
Nojima, R., Kadobayashi, Y.: Cryptographically secure bloom-filters. Trans. Data Privacy 2(2), 131–139 (2009)
Boneh, D., Kushilevitz, E., Ostrovsky, R., Skeith III, W.E.: Public Key Encryption That Allows PIR Queries. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 50–67. Springer, Heidelberg (2007)
Rottenstreich, O., Keslassy, I.: The bloom paradox: When not to use a bloom filter? In: Proc. 31th IEEE Int. Conf. on Computer Communications, INFOCOM, Orlando, Fl, USA (2012)
Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10(5), 557–570 (2002)
Lodha, S.P., Thomas, D.: Probabilistic Anonymity. In: Bonchi, F., Malin, B., Saygın, Y. (eds.) PInKDD 2007. LNCS, vol. 4890, pp. 56–79. Springer, Heidelberg (2008)
Gross, P., Parekh, J., Kaiser, G.: Secure selecticast for collaborative intrusion detection systems. In: 3rd International Workshop on Distributed Event-Based Systems, DEBS 2004 (2004)
Shanmugasundaram, K., Brönnimann, H., Memon, N.: Payload attribution via hierarchical bloom filters. In: Proceedings of the 11th ACM Conference on Computer and Communications Security, CCS 2004, pp. 31–41. ACM, New York (2004)
Gorai, M., Sridharan, K., Aditya, T., Mukkamala, R., Nukavarapu, S.: Employing bloom filters for privacy preserving distributed collaborative knn classification. In: 2011 World Congress on Information and Communication Technologies (WICT), pp. 495–500 (December 2011)
Siegenthaler, M., Birman, K.: Sharing private information across distributed databases. In: IEEE International Symposium on Network Computing and Applications, pp. 82–89 (2009)
Parekh, J.J., Wang, K., Stolfo, S.J.: Privacy-preserving payload-based correlation for accurate malicious traffic detection. In: Proceedings of the 2006 SIGCOMM Workshop on Large-Scale Attack Defense, LSAD 2006, pp. 99–106 (2006)
Bawa, M., Bayardo Jr., R.J., Agrawal, R., Vaidya, J.: Privacy-preserving indexing of documents on the network. The VLDB Journal 18(4), 837–856 (2009)
Lai, P.K.Y., Yiu, S.M., Chow, K.P., Chong, C.F., Hui, L.C.K.: An efficient bloom filter based solution for multiparty private matching. In: Proc. of the, Int. Conf. on Security and Management, SAM 2006, Las Vegas, Nevada, USA, June 26-29, pp. 286–292 (2006)
Kuzu, M., Kantarcioglu, M., Durham, E., Malin, B.: A Constraint Satisfaction Cryptanalysis of Bloom Filters in Private Record Linkage. In: Fischer-Hübner, S., Hopper, N. (eds.) PETS 2011. LNCS, vol. 6794, pp. 226–245. Springer, Heidelberg (2011)
Schnell, R., Bachteler, T., Reiher, J.: Private record linkage with bloom filters. In: Proc. of Statistics Canada Symposium 2010: Social Statistics: The Interplay among Censuses, Surveys and Administrative Data, pp. 304–309 (2010)
Goodrich, M.T., Mitzenmacher, M.: Invertible bloom lookup tables. CoRR abs/1101.2245 (2011)
Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity: Privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1(1) (2007)
Li, N., Li, T.: t-closeness: Privacy beyond k-anonymity and l-diversity. In: Proc. of IEEE 23rd Int’l Conf. on Data Engineering, ICDE 2007 (2007)
Dwork, C.: Differential Privacy: A Survey of Results. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008)
Bose, P., Guo, H., Kranakis, E., Maheshwari, A., Morin, P., Morrison, J., Smid, M., Tang, Y.: On the false-positive rate of bloom filters. Inf. Process. Lett. 108(4), 210–213 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bianchi, G., Bracciale, L., Loreti, P. (2012). ”Better Than Nothing” Privacy with Bloom Filters: To What Extent?. In: Domingo-Ferrer, J., Tinnirello, I. (eds) Privacy in Statistical Databases. PSD 2012. Lecture Notes in Computer Science, vol 7556. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33627-0_27
Download citation
DOI: https://doi.org/10.1007/978-3-642-33627-0_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33626-3
Online ISBN: 978-3-642-33627-0
eBook Packages: Computer ScienceComputer Science (R0)