Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

”Better Than Nothing” Privacy with Bloom Filters: To What Extent?

  • Conference paper
Privacy in Statistical Databases (PSD 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7556))

Included in the following conference series:

Abstract

Bloom filters are probabilistic data structures which permit to conveniently represent set membership. Their performance/memory efficiency makes them appealing in a huge variety of scenarios. Their probabilistic operation, along with the implicit data representation, yields some ambiguity on the actual data stored, which, in scenarios where cryptographic protection is unviable or unpractical, may be somewhat considered as a better than nothing privacy asset. Oddly enough, even if frequently mentioned, to the best of our knowledge the (soft) privacy properties of Bloom filters have never been explicitly quantified. This work aims to fill this gap. Starting from the adaptation of probabilistic anonymity metrics to the Bloom filter setting, we derive exact and (tightly) approximate formulae which permit to readily relate privacy properties with filter (and universe set) parameters. Using such relations, we quantitatively investigate the emerging privacy/utility trade-offs. We finally preliminary assess the advantages that a tailored insertion of a few extra (covert) bits achieves over the commonly employed strategy of increasing ambiguity via addition of random bits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7), 422–426 (1970)

    Article  MATH  Google Scholar 

  2. Stonebraker, M., Keller, K.: Embedding expert knowledge and hypothetical data bases into a data base system. In: Proc. of the 1980 ACM SIGMOD Int. Conf. on Management of Data, pp. 58–66 (1980)

    Google Scholar 

  3. Maryanski, F.J.: An architecture for fault tolerance in database systems. In: Proceedings of the ACM 1980 Annual Conference, pp. 389–398. ACM (1980)

    Google Scholar 

  4. Gremillion, L.L.: Designing a bloom filter for differential file access. Commun. ACM 25(9), 600–604 (1982)

    Article  Google Scholar 

  5. Mullin, J.K.: Accessing textual documents using compressed indexes of arrays of small bloom filters. Comput. J. 30(4), 343–348 (1987)

    Article  MathSciNet  Google Scholar 

  6. Broder, A., Mitzenmacher, M.: Network applications of bloom filters: A survey. In: Internet Mathematics, pp. 636–646 (2002)

    Google Scholar 

  7. Cai, H., Ge, P., Wang, J.: Applications of bloom filters in peer-to-peer systems: Issues and questions. In: Proceedings of the 2008 Int. Conf. on Networking, Architecture, and Storage, NAS 2008, pp. 97–103 (2008)

    Google Scholar 

  8. Tarkoma, S., Rothenberg, C., Lagerspetz, E.: Theory and practice of bloom filters for distributed systems. IEEE Communications Surveys Tutorials 14(1), 131–155 (2012)

    Article  Google Scholar 

  9. Stranneheim, H., Kaller, M., Allander, T., Andersson, B., Arvestad, L., Lundeberg, J.: Classification of dna sequences using bloom filters. Bioinformatics 26(13), 1595–1600 (2010)

    Article  Google Scholar 

  10. Bellovin, S.M., Cheswick, W.R.: Privacy-enhanced searches using encrypted bloom filters. IACR Cryptology ePrint Archive,  22 (2004)

    Google Scholar 

  11. Raykova, M., Vo, B., Bellovin, S.M., Malkin, T.: Secure anonymous database search. In: Proc. of the 2009 ACM Workshop on Cloud Computing Security, CCSW 2009, pp. 115–126 (2009)

    Google Scholar 

  12. Goh, E.J.: Secure indexes. Cryptology ePrint Archive, Report 2003/216 (2003), http://eprint.iacr.org/2003/216/

  13. Nojima, R., Kadobayashi, Y.: Cryptographically secure bloom-filters. Trans. Data Privacy 2(2), 131–139 (2009)

    MathSciNet  Google Scholar 

  14. Boneh, D., Kushilevitz, E., Ostrovsky, R., Skeith III, W.E.: Public Key Encryption That Allows PIR Queries. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 50–67. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Rottenstreich, O., Keslassy, I.: The bloom paradox: When not to use a bloom filter? In: Proc. 31th IEEE Int. Conf. on Computer Communications, INFOCOM, Orlando, Fl, USA (2012)

    Google Scholar 

  16. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10(5), 557–570 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lodha, S.P., Thomas, D.: Probabilistic Anonymity. In: Bonchi, F., Malin, B., Saygın, Y. (eds.) PInKDD 2007. LNCS, vol. 4890, pp. 56–79. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Gross, P., Parekh, J., Kaiser, G.: Secure selecticast for collaborative intrusion detection systems. In: 3rd International Workshop on Distributed Event-Based Systems, DEBS 2004 (2004)

    Google Scholar 

  19. Shanmugasundaram, K., Brönnimann, H., Memon, N.: Payload attribution via hierarchical bloom filters. In: Proceedings of the 11th ACM Conference on Computer and Communications Security, CCS 2004, pp. 31–41. ACM, New York (2004)

    Chapter  Google Scholar 

  20. Gorai, M., Sridharan, K., Aditya, T., Mukkamala, R., Nukavarapu, S.: Employing bloom filters for privacy preserving distributed collaborative knn classification. In: 2011 World Congress on Information and Communication Technologies (WICT), pp. 495–500 (December 2011)

    Google Scholar 

  21. Siegenthaler, M., Birman, K.: Sharing private information across distributed databases. In: IEEE International Symposium on Network Computing and Applications, pp. 82–89 (2009)

    Google Scholar 

  22. Parekh, J.J., Wang, K., Stolfo, S.J.: Privacy-preserving payload-based correlation for accurate malicious traffic detection. In: Proceedings of the 2006 SIGCOMM Workshop on Large-Scale Attack Defense, LSAD 2006, pp. 99–106 (2006)

    Google Scholar 

  23. Bawa, M., Bayardo Jr., R.J., Agrawal, R., Vaidya, J.: Privacy-preserving indexing of documents on the network. The VLDB Journal 18(4), 837–856 (2009)

    Article  Google Scholar 

  24. Lai, P.K.Y., Yiu, S.M., Chow, K.P., Chong, C.F., Hui, L.C.K.: An efficient bloom filter based solution for multiparty private matching. In: Proc. of the, Int. Conf. on Security and Management, SAM 2006, Las Vegas, Nevada, USA, June 26-29, pp. 286–292 (2006)

    Google Scholar 

  25. Kuzu, M., Kantarcioglu, M., Durham, E., Malin, B.: A Constraint Satisfaction Cryptanalysis of Bloom Filters in Private Record Linkage. In: Fischer-Hübner, S., Hopper, N. (eds.) PETS 2011. LNCS, vol. 6794, pp. 226–245. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  26. Schnell, R., Bachteler, T., Reiher, J.: Private record linkage with bloom filters. In: Proc. of Statistics Canada Symposium 2010: Social Statistics: The Interplay among Censuses, Surveys and Administrative Data, pp. 304–309 (2010)

    Google Scholar 

  27. Goodrich, M.T., Mitzenmacher, M.: Invertible bloom lookup tables. CoRR abs/1101.2245 (2011)

    Google Scholar 

  28. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity: Privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1(1) (2007)

    Google Scholar 

  29. Li, N., Li, T.: t-closeness: Privacy beyond k-anonymity and l-diversity. In: Proc. of IEEE 23rd Int’l Conf. on Data Engineering, ICDE 2007 (2007)

    Google Scholar 

  30. Dwork, C.: Differential Privacy: A Survey of Results. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  31. Bose, P., Guo, H., Kranakis, E., Maheshwari, A., Morin, P., Morrison, J., Smid, M., Tang, Y.: On the false-positive rate of bloom filters. Inf. Process. Lett. 108(4), 210–213 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bianchi, G., Bracciale, L., Loreti, P. (2012). ”Better Than Nothing” Privacy with Bloom Filters: To What Extent?. In: Domingo-Ferrer, J., Tinnirello, I. (eds) Privacy in Statistical Databases. PSD 2012. Lecture Notes in Computer Science, vol 7556. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33627-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33627-0_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33626-3

  • Online ISBN: 978-3-642-33627-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics