Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Sequence Dependent Properties of the Expression Dynamics of Genes and Gene Networks

  • Conference paper
Computational Methods in Systems Biology (CMSB 2012)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7605))

Included in the following conference series:

  • 1378 Accesses

Abstract

The sequence of a gene determines the protein sequence and structure, but to some extent also the kinetics of protein production. Namely, the DNA and the codon sequence affect the kinetics of transcription and translation elongation, respectively. Here, using a stochastic model of transcription and translation at the nucleotide and codon levels, we investigate the effects of the codon sequence on the dynamics of single gene expression and of a genetic switch. We find that the ribosome binding site region sequence affects mean expression rates. In the genetic toggle switch, the sequence is shown to affect the switching frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Taniguchi, Y., Choi, P., Li, G., Chen, H., Babu, M., Hearn, J., Emili, A., Xie, X.: Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329(5991), 533–538 (2010)

    Article  Google Scholar 

  2. McClure, W.: Rate-limiting steps in RNA chain initiation. PNAS 77, 5634–5638 (1980)

    Article  Google Scholar 

  3. Arkin, A., Ross, J., McAdams, H.: Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells. Genetics 149(4), 1633–1648 (1998)

    Google Scholar 

  4. Herbert, K., Porta, A.L., Wong, B., Mooney, R., Neuman, K., Landick, R., Block, S.: Sequence-resolved detection of pausing by single RNA polymerase molecules. Cell 125(6), 1083–1094 (2006)

    Article  Google Scholar 

  5. Landick, R.: The regulatory roles and mechanism of transcriptional pausing. Biochem. Soc. Trans. 34(pt. 6), 1062–1066 (2006)

    Article  Google Scholar 

  6. Bender, T., Thompson, C., Kuehl, W.: Differential expression of c-myb mRNA in murine B lymphomas by a block to transcription elongation. Science 237(4821), 1473–1476 (1987)

    Article  Google Scholar 

  7. Sørensen, M., Pedersen, S.: Absolute in vivo translation rates of individual codons in Escherichia coli: The two glutamic acid codons gaa and gag are translated with a threefold difference in rate. Journal of Molecular Biology 222(2), 265–280 (1991)

    Article  Google Scholar 

  8. Ribeiro, A., Smolander, O., Rajala, T., Häkkinen, A., Yli-Harja, O.: Delayed stochastic model of transcription at the single nucleotide level. J. Comp. Biol. 16(4), 539–553 (2009)

    Article  Google Scholar 

  9. Roussel, M., Zhu, R.: Validation of an algorithm for delay stochastic simulation of transcription and translation in prokaryotic gene expression. Phys. Biol. 3, 274–284 (2006)

    Article  Google Scholar 

  10. Mitarai, N., Sneppen, K., Pedersen, S.: Ribosome collisions and translation efficiency: Optimization by codon usage and mRNA destabilization. Journal of Molecular Biology 382, 236–245 (2008)

    Article  Google Scholar 

  11. Mäkelä, J., Lloyd-Price, J., Yli-Harja, O., Ribeiro, A.: Stochastic sequence-level model of coupled transcription and translation in prokaryotes. BMC Bioinformatics 12(1), 121 (2011)

    Article  Google Scholar 

  12. Welch, M., Govindarajan, S., Ness, J., Villalobos, A., Gurney, A., Minshull, J., Gustafsson, C.: Design parameters to control synthetic gene expression in Escherichia coli. PLoS ONE 4(9), e7002 (2009)

    Google Scholar 

  13. Tuller, T., Carmi, A., Vestsigian, K., Navon, S., Dorfan, Y., Zaborske, J., Pan, T., Dahan, O., Furman, I., Pilpel, Y.: An evolutionarily conserved mechanism for controlling the efficiency of protein translation. Cell 141(2), 344–354 (2010)

    Article  Google Scholar 

  14. Gardner, T., Cantor, C., Collins, J.: Construction of a genetic toggle switch in Escherichia coli. Nature 403(6767), 339–342 (2000)

    Article  Google Scholar 

  15. Gillespie, D.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977)

    Article  Google Scholar 

  16. Ribeiro, A.S., Lloyd-Price, J.: SGN Sim, a stochastic genetic networks simulator. Bioinformatics 23, 777–779 (2007)

    Article  Google Scholar 

  17. Proshkin, S., Rahmouni, A., Mironov, A., Nudler, E.: Cooperation between translating ribosomes and RNA polymerase in transcription elongation. Science 328(5977), 504–508 (2010)

    Article  Google Scholar 

  18. Greive, S., Weitzel, S., Goodarzi, J., Main, L., Pasman, Z., von Hippel, P.: Monitoring RNA transcription in real time by using surface plasmon resonance. Proc. Natl. Acad. Sci. USA 105(9), 3315–3320 (2008)

    Article  Google Scholar 

  19. Greive, S., von Hippel, P.: Thinking quantitatively about transcriptional regulation. Nat. Rev. Mol. Cell. Biol. 6, 221–232 (2005)

    Article  Google Scholar 

  20. Epshtein, V., Nudler, E.: Cooperation between RNA polymerase molecules in transcription elongation. Science 300(5620), 801–805 (2003)

    Article  Google Scholar 

  21. Lewin, B.: Genes IX. Jones and Bartlett Publishers, USA (2008)

    Google Scholar 

  22. Erie, D., Hajiseyedjavadi, O., Young, M., von Hippel, P.: Multiple RNA polymerase conformations and GreA: control of the fidelity of transcription. Science 262(5135), 867–873 (1993)

    Article  Google Scholar 

  23. Yu, J., Xiao, J., Ren, X., Lao, K., Xie, S.: Probing gene expression in live cells, one protein molecule at a time. Science 311, 1600–1603 (2006)

    Article  Google Scholar 

  24. Wen, J., Lancaster, L., Hodges, C., Zeri, A., Yoshimura, S.H., Noller, H.F., Bustamante, C., Tinoco, I.: Following translation by single ribosomes one codon at a time. Nature 452(7187), 598–603 (2008)

    Article  Google Scholar 

  25. Shoji, S., Walker, S., Fredrick, K.: Ribosomal translocation: one step closer to the molecular mechanism. ACS Chem. Biol. 4(2), 93–107 (2009)

    Article  Google Scholar 

  26. Jørgensen, F., Kurland, C.: Processivity errors of gene expression in Escherichia coli. Journal of Molecular Biology 215(4), 511–521 (1990)

    Article  Google Scholar 

  27. Moore, S., Sauer, R.: Ribosome rescue: tmRNA tagging activity and capacity in Escherichia coli. Mol. Microbiol. 58(2), 456–466 (2005)

    Article  Google Scholar 

  28. Cormack, B., Valdivia, R., Falkow, S.: Facs-optimized mutants of the green fluorescent protein (GFP). Gene. 173, 33–38 (1996)

    Article  Google Scholar 

  29. Ringquist, S., Shinedling, S., Barrick, D., Green, L., Binkley, J., Stormo, G., Gold, L.: Translation initiation in Escherichia coli: sequences within the ribosome-binding site. Molecular Microbiology 6(9), 1219–1229 (1992)

    Article  Google Scholar 

  30. Keiler, K.: Biology of trans-translation. Annu. Rev. Microbiol. 62, 133–151 (2008)

    Article  Google Scholar 

  31. Benson, D., KarschMizrachi, I., Lipman, D., Ostell, J., Wheeler, D.: Genbank: update. Nucleic Acids Research 32(suppl. 1), D23–D26 (2004)

    Article  Google Scholar 

  32. Ribeiro, A.: Dynamics of a two-dimensional model of cell tissues with coupled stochastic gene networks. Phys. Rev. E 76(5), 051915 (2007)

    Article  Google Scholar 

  33. Ribeiro, A., Dai, X., Yli-Harja, O.: Variability of the distribution of differentiation pathway choices regulated by a multipotent delayed stochastic switch. J. Theor. Biol. 260(1), 66–76 (2009)

    Article  MathSciNet  Google Scholar 

  34. Pedraza, J., Paulsson, J.: Effects of molecular memory and bursting on fluctuations in gene expression. Science 319(5861), 339–343 (2008)

    Article  Google Scholar 

  35. Ribeiro, A., Kauffman, S.: Noisy attractors and ergodic sets in models of gene regulatory networks. Journal of Theoretical Biology 247(4), 743–755 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Potapov, I., Mäkelä, J., Yli-Harja, O., Ribeiro, A. (2012). Sequence Dependent Properties of the Expression Dynamics of Genes and Gene Networks. In: Gilbert, D., Heiner, M. (eds) Computational Methods in Systems Biology. CMSB 2012. Lecture Notes in Computer Science(), vol 7605. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33636-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33636-2_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33635-5

  • Online ISBN: 978-3-642-33636-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics