Abstract
Exploring the community structure of biological networks can reveal the roles of individual genes in the context of the entire biological system, so as to understand the underlying mechanism of interaction. In this study we explore the disjoint and overlapping community structure of an integrated network for a major fungal pathogen of many cereal crops, Fusarium graminearum. The network was generated by combining sequence, protein interaction and co-expression data. We examine the functional characteristics of communities, the connectivity and multi-functionality of genes and explore the contribution of known virulence genes in community structure. Disjoint community structure is detected using a greedy agglomerative method based on modularity optimisation. The disjoint partition is then converted to a set of overlapping communities, where genes are allowed to belong to more than one community, through the application of a mathematical programming method. We show that genes that lie at the intersection of communities tend to be highly connected and multifunctional. Overall, we consider the topological and functional properties of proteins in the context of the community structure and try to make a connection between virulence genes and features of community structure. Such studies may have the potential to identify functionally important nodes and help to gain a better understanding of phenotypic features of a system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lee, I., Date, S.V., Adai, A.T., Marcotte, E.M.: A probabilistic functional network of yeast genes. Science 306(5701), 1555–1558 (2004)
Lee, I., Marcotte, E.M.: Integrating functional genomics data. Methods in Molecular Biology 453, 267–278 (2008)
Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. U.S.A. 99, 7821–7826 (2002)
Blondel, V., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment 2008(10), P10008 (2008)
Ruan, J., Zhang, W.: Identifying network communities with a high resolution. Phys. Rev. E, 77, 016104 (2008)
Xu, G., Bennett, L., Papageorgiou, L.G., Tsoka, S.: Module detection in complex networks using integer optimisation. Algorithms for Molecular Biology 5, 36 (2010)
Xu, G., Tsoka, S., Papageorgiou, L.G.: Finding community structures in complex networks using mixed integer optimisation. Eur. Phys. J. B 60, 231–239 (2007)
Bennett, L., Liu, S., Papageorgiou, L.G., Tsoka, S.: Detection of disjoint and overlapping modules in weighted complex networks. Advances in Complex Systems, 15, 11500 (2012)
Kuhner, S., van Noort, V., Betts, M.J., Leo-Macias, A., Batisse, C., Rode, M., Yamada, T., Maier, T., Bader, S., Beltran-Alvarez, P., Castaño-Diez, D., Chen, W.-H., Devos, D., Güell, M., Norambuena, T., Racke, I., Rybin, V., Schmidt, A., Yus, E., Aebersold, R., Herrmann, R., Böttcher, B., Frangakis, A.S., Russell, R.B., Serrano, L., Bork, P., Gavin, A.-C.: Proteome Organization in a Genome-Reduced Bacterium. Science 326(5957), 1235–1240 (2009)
Gavin, A.-C., Bosche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J.M., Michon, A.-M., Cruciat, C.-M., Remor, M., Hofert, C., Schelder, M., Brajenovic, M., Ruffner, H., Merino, A., Klein, K., Hudak, M., Dickson, D., Rudi, T., Gnau, V., Bauch, A., Bastuck, S., Huhse, B., Leutwein, C., Heurtier, M.-A., Copley, R.R., Edelmann, A., Querfurth, E., Rybin, V., Drewes, G., Raida, M., Bouwmeester, T., Bork, P., Seraphin, B., Kuster, B., Neubauer, G., Superti-Furga, G.: Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868), 141–147 (2002)
Salathé, M., Jones, J.H.: Dynamics and Control of Diseases in Networks with Community Structure. PLoS Computational Biology 6(4), e1000736 (2010)
Zhang, S., Wang, R.-S., Zhang, X.-S.: Identification of overlapping community structure in complex networks using fuzzy c-means clustering. Physica A: Statistical Mechanics and its Applications 374(1), 483–490 (2007)
Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping structure of complex networks in nature and society. Nature 435, 814–818 (2005)
Ma, X., Gao, L., Yong, X.: Eigenspaces of networks reveal the overlapping and hierarchical community structure more precisely. J. Stat. Mech., P08012 (2010)
Zhang, S., Wang, R.S., Zhang, X.S.: Uncovering fuzzy community structure in complex networks. Physical Review E 76(046103) (2007)
Zarei, M., Izadi, D., Samani, K.A.: Detecting overlapping community structure of networks based on vertex-vertex correlations. Journal of Statistical Mechanics (P11013) (2009)
Lancichinetti, A., Fortunato, S., Kertész, J.: Detecting the overlapping and hierarchical community structure in complex networks. New Journal of Physics 11(033015) (2009)
Wang, X., Jiao, L., Wu, J.: Adjusting from disjoint to overlapping community detection of complex networks. Physica A 388, 5045–5056 (2009)
Becker, E., Robisson, B., Chapple, C.E., Guénoche, A., Brun, C.: Multifunctional Proteins Revealed by Overlapping Clustering in Protein Interaction Network. Bioinformatics 28(1), 84–90 (2012)
Guimera, R., Amaral, L.A.N.: Functional Cartography of Complex Metabolic Networks. Nature 433, 895–900 (2005)
Liu, G., Wong, L., Chua, H.N.: Complex discovery from weighted PPI networks. Bioinformatics 25(15), 1891–1897 (2009)
Cuomo, C.A., Guldener, U., Xu, J.R., Trail, F., Turgeon, B.G., Di Pietro, A., Walton, J.D., Ma, L.J., Baker, S.E., Rep, M., Adam, G., Antoniw, J., Baldwin, T., Calvo, S., Chang, Y.L., Decaprio, D., Gale, L.R., Gnerre, S., Goswami, R.S., Hammond-Kosack, K., Harris, L.J., Hilburn, K., Kennell, J.C., Kroken, S., Magnuson, J.K., Mannhaupt, G., Mauceli, E., Mewes, H.W., Mitterbauer, R., Muehlbauer, G., Munsterkotter, M., Nelson, D., O’Donnell, K., Ouellet, T., Qi, W., Quesneville, H., Roncero, M.I., Seong, K.Y., Tetko, I.V., Urban, M., Waalwijk, C., Ward, T.J., Yao, J., Birren, B.W., Kistler, H.C.: The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317(5843), 1400–1402 (2007)
Wise, R.P., Caldo, R.A., Hong, L., Shen, L., Cannon, E., Dickerson, J.A.: BarleyBase/PLEXdb. Methods in Molecular Biology 406, 347–363 (2007)
Zhao, X.M., Zhang, X.W., Tang, W.H., Chen, L.: FPPI: Fusarium graminearum protein-protein interaction database. J. Proteome Res. 8(10), 4714–4721 (2009)
Obayashi, T., Kinoshita, K., Nakai, K., Shibaoka, M., Hayashi, S., Saeki, M., Shibata, D., Saito, K., Ohta, H.: ATTED-II: a database of co-expressed genes and cis elements for identifying co-regulated gene groups in Arabidopsis. Nucleic Acids Research 35(suppl. 1), D863–D869 (2007)
Zhao, X.-M., Zhang, X.-W., Tang, W.-H., Chen, L.: FPPI: Fusarium graminearum Protein-Protein Interaction Database. Journal of Proteome Research 8(10), 4714–4721 (2009)
Kohler, J., Baumbach, J., Taubert, J., Specht, M., Skusa, A., Ruegg, A., Rawlings, C., Verrier, P., Philippi, S.: Graph-based analysis and visualization of experimental results with ONDEX. Bioinformatics 22(11), 1383–1390 (2006)
Lysenko, A., Defoin-Platel, M., Hassani-Pak, K., Taubert, J., Hodgman, C., Rawlings, C., Saqi, M.: Assessing the functional coherence of modules found in multiple-evidence networks from Arabidopsis. BMC Bioinformatics 12(1), 203
Newman, M., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004)
Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., Sherlock, G.: Gene Ontology: tool for the unification of biology. Nat. Genet. 25(1), 25–29 (2000)
Chen, J., Yuan, B.: Detecting functional modules in the yeast protein-protein interaction network. Bioinformatics 22(18), 2283–2290 (2006)
R Development Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2010)
Son, H., Seo, Y., Min, K., Park, A., Lee, J., Jin, J., Lin, Y., Cao, P., Hong, S., Kim, E., Lee, S., Cho, A., Lee, S., Kim, M., Kim, Y., Kim, J., Kim, J., Choi, G., Yun, S., Lim, J., Kim, M., Lee, Y., Choi, Y., Lee, Y.: A phenome-based functional analysis of transcription factors in the cereal head blight fungus, Fusarium graminearum. PLoS Pathogens 7, e1002310 (2011)
Winnenburg, R., Baldwin, T.K., Urban, M., Rawlings, C., Kohler, J., Hammond-Kosack, K.E.: PHI-base: a new database for pathogen host interactions. Nucleic Acids Res. 64(Database issue), D459–D464 (2006)
Winnenburg, R., Urban, M., Beacham, A., Baldwin, T.K., Holland, S., Lindeberg, M., Hansen, H., Rawlings, C., Hammond-Kosack, K.E., Kohler, J.: PHI-base update: additions to the pathogen host interaction database. Nucleic Acids Res. 6(Database issue), D572–D576 (2008)
Oidea, S., Moederb, W., Krasnoffc, S., Gibsonc, D., Haasd, H., Yoshiokab, K., Turgeona, B.G.: NPS6, Encoding a Nonribosomal Peptide Synthetase Involved in Siderophore-Mediated Iron Metabolism, Is a Conserved Virulence Determinant of Plant Pathogenic Ascomycetes. The Plant Cell 18, 2836–2853 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bennett, L. et al. (2012). Detection of Multi-clustered Genes and Community Structure for the Plant Pathogenic Fungus Fusarium graminearum. In: Gilbert, D., Heiner, M. (eds) Computational Methods in Systems Biology. CMSB 2012. Lecture Notes in Computer Science(), vol 7605. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33636-2_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-33636-2_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33635-5
Online ISBN: 978-3-642-33636-2
eBook Packages: Computer ScienceComputer Science (R0)