Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Predicting Phenotype from Genotype through Automatically Composed Petri Nets

  • Conference paper
Computational Methods in Systems Biology (CMSB 2012)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7605))

Included in the following conference series:

Abstract

We describe a modular modelling approach permitting curation, updating, and distributed development of modules through joined community effort overcoming the problem of keeping a combinatorially exploding number of monolithic models up to date. For this purpose, the effects of genes and their mutated alleles on downstream components are modeled by composable, metadata-containing Petri net models organized in a database with version control, accessible through a web interface (www.biomodelkit.org). Gene modules can be coupled to protein modules through mRNA modules by specific interfaces designed for the automatic, database-assisted composition. Automatically assembled executable models may then consider cell type-specific gene expression patterns and the resulting protein concentrations. Gene modules and allelic interference modules may represent effects of gene mutation and predict their pleiotropic consequences or uncover complex genotype/phenotype relationships. Forward and reverse engineered modules are fully compatible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baldauf, S.L., Doolittle, W.F.: Origin and evolution of the slime molds (Mycetozoa). Proc. Natl. Acad. Sci. USA 94, 12007–12012 (1997)

    Article  Google Scholar 

  2. Baldauf, S.L., Roger, A.J., Wenk-Siefert, I., Doolittle, W.F.: A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290, 972–976 (2000)

    Article  Google Scholar 

  3. Barrantes, I., Glöckner, G., Meyer, S., Marwan, W.: Transcriptomic changes arising during light-induced sporulation in Physarum polycephalum. BMC Genomics 11, 115 (2010)

    Article  Google Scholar 

  4. Blätke, M.A., Dittrich, A., Rohr, C., Heiner, M., Schaper, F., Marwan, W.: JAK/STAT signalling - an executable model assembled from molecule-centred modules demonstrating a module-oriented database concept for systems- and synthetic biology (submitted 2012)

    Google Scholar 

  5. Blätke, M.A., Meyer, S., Marwan, W.: Pain signaling - A case study of the modular Petri net modeling moncept with prospect to a protein-oriented modeling platform. In: Proceedings of the 2nd International Workshop on Biological Processes & Petri Nets (BioPPN 2011), Newcastle upon Tyne, United Kingdom, pp. 1–19 (2011)

    Google Scholar 

  6. Blätke, M.A.: BioModelKit (2012), http://www.biomodelkit.org

  7. Burland, T.G., Solnica-Krezel, L., Bailey, J., Cunningham, D.B., Dove, W.F.: Patterns of inheritance, development and the mitotic cycle in the protist Physarum polycephalum. Adv. Microb. Physiol. 35, 1–69 (1993)

    Article  Google Scholar 

  8. Cerutti, H., Casas-Mollano, J.A.: On the origin and functions of RNA-mediated silencing: from protists to man. Current Genetics 50(2), 81–99 (2006)

    Article  Google Scholar 

  9. Chia, N.Y., Chan, Y.S., Feng, B., Lu, X., Orlov, Y.L., Moreau, D., Kumar, P., Yang, L., Jiang, J., Lau, M.S., Huss, M., Soh, B.S., Kraus, P., Li, P., Lufkin, T., Lim, B., Clarke, N.D., Bard, F., Ng, H.H.: A genome-wide RNAi screen reveals determinants of human embryonic stem cell identity. Nature 468(7321), 316–320 (2010)

    Article  Google Scholar 

  10. Cuomo, A., Bonaldi, T.: Systems biology ”on-the-fly”: SILAC-based quantitative proteomics and RNAi approach in Drosophila melanogaster. Methods in Molecular Biology 662, 59–78 (2010)

    Article  Google Scholar 

  11. Durzinsky, M., Marwan, W., Ostrowski, M., Schaub, T., Wagler, A.: Automatic network reconstruction using ASP. Theory and Practice of Logic Programming 11, 749–766 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Durzinsky, M., Wagler, A., Marwan, W.: Reconstruction of extended Petri nets from time series data and its application to signal transduction and to gene regulatory networks. BMC Systems Biology 5(1), 113 (2011)

    Article  Google Scholar 

  13. Fisher, J., Henzinger, T.A.: Executable cell biology. Nature Biotechnology 25(11), 1239–1249 (2007)

    Article  Google Scholar 

  14. Gerber, A., Luschnig, S., Krasnow, M., Brown, P.: Genome-wide identification of mRNAs associated with the translational regulator PUMILIO in Drosophila melanogaster. Proceedings of the National Academy of Sciences 103(12), 4487–4492 (2006)

    Article  Google Scholar 

  15. Glöckner, G., Golderer, G., Werner-Felmayer, G., Meyer, S., Marwan, W.: A first glimpse at the transcriptome of Physarum polycephalum. BMC Genomics 9, 6 (2008)

    Article  Google Scholar 

  16. Hecker, M., Lambeck, S., Toepfer, S., Van Someren, E., Guthke, R.: Gene regulatory network inference: data integration in dynamic models-a review. Bio Systems 96(1), 86–103 (2009)

    Article  Google Scholar 

  17. Heiner, M., Gilbert, D., Donaldson, R.: Petri Nets for Systems and Synthetic Biology. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 215–264. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Heiner, M., Lehrack, S., Gilbert, D., Marwan, W.: Extended stochastic Petri nets for model-based design of wetlab experiments. Transactions on Computational Systems Biology XI, 138–163 (2009)

    Google Scholar 

  19. Heiner, M., Herajy, M., Liu, F., Rohr, C., Schwarick, M.: Snoopy – A Unifying Petri Net Tool. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol. 7347, pp. 398–407. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  20. Hoffmann, X.K., Tesmer, J., Souquet, M., Marwan, W.: Futile attempts to differentiate provide molecular evidence for individual differences within a population of cells during cellular reprogramming. FEMS Microbiology Letters 329(1), 78–86 (2012)

    Article  Google Scholar 

  21. Hsieh, Y.J., Wanner, B.L.: Global regulation by the seven-component Pi signaling system. Current Opinion in Microbiology 13(2), 198–203 (2010)

    Article  Google Scholar 

  22. Ideker, T., Krogan, N.J.: Differential network biology. Molecular Systems Biology 8, 565 (2012)

    Article  Google Scholar 

  23. Kolch, W., Calder, M., Gilbert, D.: When kinases meet mathematics: the systems biology of MAPK signalling. FEBS Letters 579(8), 1891–1895 (2005)

    Article  Google Scholar 

  24. Marwan, W., Rohr, C., Heiner, M.: Petri nets in Snoopy: a unifying framework for the graphical display, computational modelling, and simulation of bacterial regulatory networks. Methods in Molecular Biology 804, 409–437 (2012)

    Article  Google Scholar 

  25. Moffat, J., Sabatini, D.M.: Building mammalian signalling pathways with RNAi screens. Nature Reviews Molecular Cell Biology 7(3), 177–187 (2006)

    Article  Google Scholar 

  26. Neidhardt, F., Ingraham, J., Schaechter, M.: Physiology of the Bacterial Cell. A Molecular Approach. Sinauer Associates, Sunderland (1990)

    Google Scholar 

  27. Orton, R., Adriaens, M., Gormand, A., Sturm, O., Kolch, W., Gilbert, D.: Computational modelling of cancerous mutations in the EGFR/ERK signalling pathway. BMC Systems Biology 3(1), 100 (2009)

    Article  Google Scholar 

  28. Pinney, J.W., Westhead, R.D., McConkey, G.A.: Petri net representations in systems biology. Biochem. Soc. Trans. 31, 1513–1515 (2003)

    Article  Google Scholar 

  29. Rohr, C., Marwan, W., Heiner, M.: Snoopy–a unifying Petri net framework to investigate biomolecular networks. Bioinformatics 26(7), 974–975 (2010)

    Article  Google Scholar 

  30. Schwanhäusser, B., Busse, D., Li, N., Dittmar, G., Schuchhardt, J., Wolf, J., Chen, W., Selbach, M.: Global quantification of mammalian gene expression control. Nature 473(7347), 337–342 (2011)

    Article  Google Scholar 

  31. Sturm, O.E., Orton, R., Grindlay, J., Birtwistle, M., Vyshemirsky, V., Gilbert, D., Calder, M., Pitt, A., Kholodenko, B., Kolch, W.: The mammalian MAPK/ERK pathway exhibits properties of a negative feedback amplifier. Science Signaling 3(153), 90 (2010)

    Google Scholar 

  32. Sujatha, A., Balaji, S., Devi, R., Marwan, W.: Isolation of Physarum polycephalum plasmodial mutants altered in sporulation by chemical mutagenesis of flagellates. Eur. J. Protistol. 41, 19–27 (2005)

    Article  Google Scholar 

  33. Uhlmann, S., Mannsperger, H., Zhang, J.D., Horvat, E.A., Schmidt, C., Küblbeck, M., Henjes, F., Ward, A., Tschulena, U., Zweig, K., Korf, U., Wiemann, S., Sahin, O.: Global microRNA level regulation of EGFR-driven cell-cycle protein network in breast cancer. Molecular Systems Biology 8, 570 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blätke, M.A., Heiner, M., Marwan, W. (2012). Predicting Phenotype from Genotype through Automatically Composed Petri Nets. In: Gilbert, D., Heiner, M. (eds) Computational Methods in Systems Biology. CMSB 2012. Lecture Notes in Computer Science(), vol 7605. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33636-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33636-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33635-5

  • Online ISBN: 978-3-642-33636-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics