Abstract
We describe a modular modelling approach permitting curation, updating, and distributed development of modules through joined community effort overcoming the problem of keeping a combinatorially exploding number of monolithic models up to date. For this purpose, the effects of genes and their mutated alleles on downstream components are modeled by composable, metadata-containing Petri net models organized in a database with version control, accessible through a web interface (www.biomodelkit.org). Gene modules can be coupled to protein modules through mRNA modules by specific interfaces designed for the automatic, database-assisted composition. Automatically assembled executable models may then consider cell type-specific gene expression patterns and the resulting protein concentrations. Gene modules and allelic interference modules may represent effects of gene mutation and predict their pleiotropic consequences or uncover complex genotype/phenotype relationships. Forward and reverse engineered modules are fully compatible.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baldauf, S.L., Doolittle, W.F.: Origin and evolution of the slime molds (Mycetozoa). Proc. Natl. Acad. Sci. USA 94, 12007–12012 (1997)
Baldauf, S.L., Roger, A.J., Wenk-Siefert, I., Doolittle, W.F.: A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290, 972–976 (2000)
Barrantes, I., Glöckner, G., Meyer, S., Marwan, W.: Transcriptomic changes arising during light-induced sporulation in Physarum polycephalum. BMC Genomics 11, 115 (2010)
Blätke, M.A., Dittrich, A., Rohr, C., Heiner, M., Schaper, F., Marwan, W.: JAK/STAT signalling - an executable model assembled from molecule-centred modules demonstrating a module-oriented database concept for systems- and synthetic biology (submitted 2012)
Blätke, M.A., Meyer, S., Marwan, W.: Pain signaling - A case study of the modular Petri net modeling moncept with prospect to a protein-oriented modeling platform. In: Proceedings of the 2nd International Workshop on Biological Processes & Petri Nets (BioPPN 2011), Newcastle upon Tyne, United Kingdom, pp. 1–19 (2011)
Blätke, M.A.: BioModelKit (2012), http://www.biomodelkit.org
Burland, T.G., Solnica-Krezel, L., Bailey, J., Cunningham, D.B., Dove, W.F.: Patterns of inheritance, development and the mitotic cycle in the protist Physarum polycephalum. Adv. Microb. Physiol. 35, 1–69 (1993)
Cerutti, H., Casas-Mollano, J.A.: On the origin and functions of RNA-mediated silencing: from protists to man. Current Genetics 50(2), 81–99 (2006)
Chia, N.Y., Chan, Y.S., Feng, B., Lu, X., Orlov, Y.L., Moreau, D., Kumar, P., Yang, L., Jiang, J., Lau, M.S., Huss, M., Soh, B.S., Kraus, P., Li, P., Lufkin, T., Lim, B., Clarke, N.D., Bard, F., Ng, H.H.: A genome-wide RNAi screen reveals determinants of human embryonic stem cell identity. Nature 468(7321), 316–320 (2010)
Cuomo, A., Bonaldi, T.: Systems biology ”on-the-fly”: SILAC-based quantitative proteomics and RNAi approach in Drosophila melanogaster. Methods in Molecular Biology 662, 59–78 (2010)
Durzinsky, M., Marwan, W., Ostrowski, M., Schaub, T., Wagler, A.: Automatic network reconstruction using ASP. Theory and Practice of Logic Programming 11, 749–766 (2011)
Durzinsky, M., Wagler, A., Marwan, W.: Reconstruction of extended Petri nets from time series data and its application to signal transduction and to gene regulatory networks. BMC Systems Biology 5(1), 113 (2011)
Fisher, J., Henzinger, T.A.: Executable cell biology. Nature Biotechnology 25(11), 1239–1249 (2007)
Gerber, A., Luschnig, S., Krasnow, M., Brown, P.: Genome-wide identification of mRNAs associated with the translational regulator PUMILIO in Drosophila melanogaster. Proceedings of the National Academy of Sciences 103(12), 4487–4492 (2006)
Glöckner, G., Golderer, G., Werner-Felmayer, G., Meyer, S., Marwan, W.: A first glimpse at the transcriptome of Physarum polycephalum. BMC Genomics 9, 6 (2008)
Hecker, M., Lambeck, S., Toepfer, S., Van Someren, E., Guthke, R.: Gene regulatory network inference: data integration in dynamic models-a review. Bio Systems 96(1), 86–103 (2009)
Heiner, M., Gilbert, D., Donaldson, R.: Petri Nets for Systems and Synthetic Biology. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 215–264. Springer, Heidelberg (2008)
Heiner, M., Lehrack, S., Gilbert, D., Marwan, W.: Extended stochastic Petri nets for model-based design of wetlab experiments. Transactions on Computational Systems Biology XI, 138–163 (2009)
Heiner, M., Herajy, M., Liu, F., Rohr, C., Schwarick, M.: Snoopy – A Unifying Petri Net Tool. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol. 7347, pp. 398–407. Springer, Heidelberg (2012)
Hoffmann, X.K., Tesmer, J., Souquet, M., Marwan, W.: Futile attempts to differentiate provide molecular evidence for individual differences within a population of cells during cellular reprogramming. FEMS Microbiology Letters 329(1), 78–86 (2012)
Hsieh, Y.J., Wanner, B.L.: Global regulation by the seven-component Pi signaling system. Current Opinion in Microbiology 13(2), 198–203 (2010)
Ideker, T., Krogan, N.J.: Differential network biology. Molecular Systems Biology 8, 565 (2012)
Kolch, W., Calder, M., Gilbert, D.: When kinases meet mathematics: the systems biology of MAPK signalling. FEBS Letters 579(8), 1891–1895 (2005)
Marwan, W., Rohr, C., Heiner, M.: Petri nets in Snoopy: a unifying framework for the graphical display, computational modelling, and simulation of bacterial regulatory networks. Methods in Molecular Biology 804, 409–437 (2012)
Moffat, J., Sabatini, D.M.: Building mammalian signalling pathways with RNAi screens. Nature Reviews Molecular Cell Biology 7(3), 177–187 (2006)
Neidhardt, F., Ingraham, J., Schaechter, M.: Physiology of the Bacterial Cell. A Molecular Approach. Sinauer Associates, Sunderland (1990)
Orton, R., Adriaens, M., Gormand, A., Sturm, O., Kolch, W., Gilbert, D.: Computational modelling of cancerous mutations in the EGFR/ERK signalling pathway. BMC Systems Biology 3(1), 100 (2009)
Pinney, J.W., Westhead, R.D., McConkey, G.A.: Petri net representations in systems biology. Biochem. Soc. Trans. 31, 1513–1515 (2003)
Rohr, C., Marwan, W., Heiner, M.: Snoopy–a unifying Petri net framework to investigate biomolecular networks. Bioinformatics 26(7), 974–975 (2010)
Schwanhäusser, B., Busse, D., Li, N., Dittmar, G., Schuchhardt, J., Wolf, J., Chen, W., Selbach, M.: Global quantification of mammalian gene expression control. Nature 473(7347), 337–342 (2011)
Sturm, O.E., Orton, R., Grindlay, J., Birtwistle, M., Vyshemirsky, V., Gilbert, D., Calder, M., Pitt, A., Kholodenko, B., Kolch, W.: The mammalian MAPK/ERK pathway exhibits properties of a negative feedback amplifier. Science Signaling 3(153), 90 (2010)
Sujatha, A., Balaji, S., Devi, R., Marwan, W.: Isolation of Physarum polycephalum plasmodial mutants altered in sporulation by chemical mutagenesis of flagellates. Eur. J. Protistol. 41, 19–27 (2005)
Uhlmann, S., Mannsperger, H., Zhang, J.D., Horvat, E.A., Schmidt, C., Küblbeck, M., Henjes, F., Ward, A., Tschulena, U., Zweig, K., Korf, U., Wiemann, S., Sahin, O.: Global microRNA level regulation of EGFR-driven cell-cycle protein network in breast cancer. Molecular Systems Biology 8, 570 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Blätke, M.A., Heiner, M., Marwan, W. (2012). Predicting Phenotype from Genotype through Automatically Composed Petri Nets. In: Gilbert, D., Heiner, M. (eds) Computational Methods in Systems Biology. CMSB 2012. Lecture Notes in Computer Science(), vol 7605. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33636-2_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-33636-2_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33635-5
Online ISBN: 978-3-642-33636-2
eBook Packages: Computer ScienceComputer Science (R0)