Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Requirement Decomposition and Testability in Development of Safety-Critical Automotive Components,

  • Conference paper
Computer Safety, Reliability, and Security (SAFECOMP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7612))

Included in the following conference series:

Abstract

12ISO26262 is a recently approved standard for functional safety in road vehicles. It provides guidelines on minimization of unreasonable safety risks during development of embedded systems in road vehicles. However, the development process specified in ISO26262 involves a number of steps that will require changing traditional and well established development processes. In a transition phase, however, due to lack of tool support, the steps may be performed manually, increasing the risk for delays and increased cost. This paper describes a case study in which we have successfully worked with traceability and testability of functional safety requirements, as well as safety requirements assigned to a testing tool that automates integration and verification steps, leading to standard-compliant tool qualification. Our tool qualification method employs fault injection as a validation method to increase confidence in the tool. Our case study will help to avoid many of the new pitfalls that can arise when attempting to realize standard-compliant development.

* This work has resulted from FUSS, a subproject of DFEA2020, partially sponsored by the FFI council of VINNOVA (Swedish Research Agency).

The authors thank Erik Hesslow, an ISO26262 safety expert from Mecel AB (partner in the FUSS/DFEA2020 project), for reviewing the work and providing valuable comments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. ISO, ISO 26262:2011 Functional safety - road vehicles, ISO (2011)

    Google Scholar 

  2. Dittel, T., Aryus, H.-J.: How to “Survive” a Safety Case According to ISO 26262. In: Schoitsch, E. (ed.) SAFECOMP 2010. LNCS, vol. 6351, pp. 97–111. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Hamann, R., Sauler, J., Kriso, S., Grote, W., Mössinger, J.: Application of ISO 26262 in distributed development ISO 26262 in reality, SAE Technical Paper (2009)

    Google Scholar 

  4. Born, M., Favaro, J., Olaf, K.: Application of ISO DIS 26262 in practice. In: Proc. of the 1st Workshop on Critical Automotive Applications: Robustness & Safety (2010)

    Google Scholar 

  5. Schubotz, H.: Experience with ISO WD 26262 in Automotive Safety Projects. SAE Tech. Paper (2008)

    Google Scholar 

  6. Hillenbrand, M., Heinz, M., Adler, N., Müller-Glaser, K.D., Matheis, J., Reichmann, C.: ISO/DIS 26262 in the Context of Electric and Electronic Architecture Modeling. In: Giese, H. (ed.) ISARCS 2010. LNCS, vol. 6150, pp. 179–192. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Johannessen, P., Halonen, Ö., Örsmark, O.: Functional Safety Extensions to Automotive SPICE According to ISO 26262. In: O’Connor, R.V., Rout, T., McCaffery, F., Dorling, A. (eds.) SPICE 2011. CCIS, vol. 155, pp. 52–63. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Hillenbrand, M., Heinz, M., Müller-Glaser, K., Adler, N., Matheis, J., Reichman, C.: An approach for rapidly adapting the demands of ISO/DIS 26262 to electric/electronic architecture modeling. In: Proc. of the Intl. Symp. on Rapid System Prototyping (2010)

    Google Scholar 

  9. Makartetskiy, D., Pozza, D., Sisto, R.: An Overview of software-based support tools for ISO26262. In: Intl. Workshop Innovation Inf. Tech. - Theory and Practice (2010)

    Google Scholar 

  10. Hillenbrand, M., Heinz, M., Adler, N., Matheis, J., Müller-Glaser, K.: Failure mode and effect analysis based on electric and electronic architectures of vehicles to support the safety lifecycle ISO/DIS 26262. In: Intl. Symp. on Rapid System Prototyping (2010)

    Google Scholar 

  11. Schubotz, H.: Integrated safety planning according to ISO 26262, SAE Tech. Paper (2009)

    Google Scholar 

  12. Palin, B., Ward, D., Habli, I., Rivett, R.: ISO 26262 safety cases: compliance and assurance. In: IET Intl. System Safety Conf. (2011)

    Google Scholar 

  13. Conrad, M., Munier, P., Rauch, F.: Qualifying Software Tools According to ISO 26262. In: Model-Based Development of Embedded Systems (2010)

    Google Scholar 

  14. Hillebrand, J., Reichenpfader, P., Mandic, I., Siegl, H., Peer, C.: Establishing Confidence in the Usage of Software Tools in Context of ISO 26262. In: Flammini, F., Bologna, S., Vittorini, V. (eds.) SAFECOMP 2011. LNCS, vol. 6894, pp. 257–269. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Robinson-Mallett, C., Heers, H.: Qualifizierung der Konfiguration eines Integrations-HiL zum Nachweis einer Fahrerassistenzfunction im Kontext der ISO 26262. In: Elektronik im Kraftfahrzeug, Internationaler Kongress mit Fachausstellung (2011)

    Google Scholar 

  16. Wang, Q., Wallin, A., Izosimov, V., Ingelsson, U., Peng, Z.: Test tool qualification through fault simulation. In: European Test Symp. (2012)

    Google Scholar 

  17. Åström, A., Izosimov, V., Örsmark, O.: Efficient software tool qualification for automotive safety-critical systems. In: Elektronik im Kraftfahrzeug, Internationaler Kongress mit Fachausstellung (2011)

    Google Scholar 

  18. Arkley, P., Riddle, S.: Overcoming the traceability benefit problem. In: Proc. of the 13th IEEE Intl. Conf. on Requirements Engineering (2005)

    Google Scholar 

  19. Andersen, B.S., Romanski, G.: Verification of safety-critical software. ACM Queue 9(8), 1–10 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Izosimov, V., Ingelsson, U., Wallin, A. (2012). Requirement Decomposition and Testability in Development of Safety-Critical Automotive Components, . In: Ortmeier, F., Daniel, P. (eds) Computer Safety, Reliability, and Security. SAFECOMP 2012. Lecture Notes in Computer Science, vol 7612. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33678-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33678-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33677-5

  • Online ISBN: 978-3-642-33678-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics