Abstract
The technique of “renormalization” for geometric estimation attracted much attention when it was proposed in early 1990s for having higher accuracy than any other then known methods. Later, it was replaced by minimization of the reprojection error. This paper points out that renormalization can be modified so that it outperforms reprojection error minimization. The key fact is that renormalization directly specifies equations to solve, just as the “estimation equation” approach in statistics, rather than minimizing some cost. Exploiting this fact, we modify the problem so that the solution has zero bias up to high order error terms; we call the resulting scheme hyper-renormalization. We apply it to ellipse fitting to demonstrate that it indeed surpasses reprojection error minimization. We conclude that it is the best method available today.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Al-Sharadqah, A., Chernov, N.: A doubly optimal ellipse fit. Comp. Stat. Data Anal. 56(9), 2771–2781 (2012)
Chernov, N., Lesort, C.: Statistical efficiency of curve fitting algorithms. Comp. Stat. Data Anal. 47(4), 713–728 (2004)
Chojnacki, W., Brooks, M.J., van den Hengel, A.: Rationalising the renormalization method of Kanatani. J. Math. Imaging Vis. 21(11), 21–38 (2001)
Chojnacki, W., Brooks, M.J., van den Hengel, A., Gawley, D.: On the fitting of surfaces to data with covariances. IEEE Trans. Patt. Anal. Mach. Intell. 22(11), 1294–1303 (2000)
Godambe, V.P. (ed.): Estimating Functions. Oxford University Press, New York (1991)
Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)
Kanatani, K.: Renormalization for unbiased estimation. In: Proc. 4th Int. Conf. Comput. Vis., Berlin, Germany, pp. 599–606 (May 1993)
Kanatani, K.: Statistical Optimization for Geometric Computation. Theory and Practice. Elsevier, Amsterdam (1996); reprinted, Dover, New York, U.S.A., (2005)
Kanatani, K.: Ellipse fitting with hyperaccuracy. IEICE Trans. Inf. & Syst. E89-D(10), 2653–2660 (2006)
Kanatani, K.: Statistical optimization for geometric fitting: Theoretical accuracy bound and high order error analysis. Int. J. Comput. Vis. 80(2), 167–188 (2008)
Kanatani, K., Rangarajan, P.: Hyper least squares fitting of circles and ellipses. Comput. Stat. Data Anal. 55(6), 2197–2208 (2011)
Kanatani, K., Rangarajan, P., Sugaya, Y., Niitsuma, H.: HyperLS for parameter estimation in geometric fitting. IPSJ Trans. Comput. Vis. Appl. 3, 80–94 (2011)
Kanatani, K., Sugaya, Y.: Unified computation of strict maximum likelihood for geometric fitting. J. Math. Imaging Vis. 38(1), 1–13 (2010)
Leedan, Y., Meer, P.: Heteroscedastic regression in computer vision: Problems with bilinear constraint. Int. J. Comput. Vis. 37(2), 127–150 (2000)
Matei, J., Meer, P.: Estimation of nonlinear errors-in-variables models for computer vision applications. IEEE Trans. Patt. Anal. Mach. Intell. 28(10), 1537–1552 (2006)
Okatani, T., Deguchi, K.: On bias correction for geometric parameter estimation in computer vision. In: Proc. IEEE Conf. Computer Vision Pattern Recognition, Miami Beach, FL, U.S.A., pp. 959–966 (June 2009)
Okatani, T., Deguchi, K.: Improving accuracy of geometric parameter estimation using projected score method. In: Proc. 12th Int. Conf. Computer Vision, Kyoto, Japan, pp. 1733–1740 (September/October 2009)
Rangarajan, P., Kanatani, K.: Improved algebraic methods for circle fitting. Electronic J. Stat. 3, 1075–1082 (2009)
Taubin, G.: Estimation of planar curves, surfaces, and non-planar space curves defined by implicit equations with applications to edge and range image segmentation. IEEE Trans. Patt. Anal. Mach. Intell. 13(11), 1115–1138 (1991)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kanatani, K., Al-Sharadqah, A., Chernov, N., Sugaya, Y. (2012). Renormalization Returns: Hyper-renormalization and Its Applications. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds) Computer Vision – ECCV 2012. ECCV 2012. Lecture Notes in Computer Science, vol 7574. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33712-3_28
Download citation
DOI: https://doi.org/10.1007/978-3-642-33712-3_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33711-6
Online ISBN: 978-3-642-33712-3
eBook Packages: Computer ScienceComputer Science (R0)