Abstract
Triangulation of a three-dimensional point from n ≥ 2 two-dimensional images can be formulated as a quadratically constrained quadratic program. We propose an algorithm to extract candidate solutions to this problem from its semidefinite programming relaxations. We then describe a sufficient condition and a polynomial time test for certifying when such a solution is optimal. This test has no false positives. Experiments indicate that false negatives are rare, and the algorithm has excellent performance in practice. We explain this phenomenon in terms of the geometry of the triangulation problem.
Chapter PDF
Similar content being viewed by others
Keywords
- Singular Value Decomposition
- Camera Center
- Global Optimality Condition
- Epipolar Constraint
- Trifocal Tensor
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Freund, R.W., Jarre, F.: Solving the sum-of-ratios problem by an interior-point method. J. Glob. Opt. 19(1), 83–102 (2001)
Hartley, R., Seo, Y.: Verifying global minima for l 2 minimization problems. In: CVPR (2008)
Hartley, R., Sturm, P.: Triangulation. CVIU 68(2), 146–157 (1997)
Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press (2003)
Heyden, A., Åström, K.: Algebraic properties of multilinear constraints. Math. Methods Appl. Sci. 20(13), 1135–1162 (1997)
Jeyakumar, V., Rubinov, A., Wu, Z.: Non-convex quadratic minimization problems with quadratic constraints: global optimality conditions. Mathematical Programming 110(3), 521–541 (2007)
Kahl, F., Agarwal, S., Chandraker, M.K., Kriegman, D.J., Belongie, S.: Practical global optimization for multiview geometry. IJCV 79(3), 271–284 (2008)
Kahl, F., Henrion, D.: Globally optimal estimates for geometric reconstruction problems. IJCV 74(1), 3–15 (2007)
Kanatani, K., Niitsuma, H., Sugaya, Y.: Optimization without search: Constraint satisfaction by orthogonal projection with applications to multiview triangulation. Memoirs of the Faculty of Engineering 44, 32–41 (2010)
Laurent, M.: Sums of squares, moment matrices and optimization over polynomials. IMA Vol. Math. Appl., vol. 149, pp. 157–270. Springer (2009)
Li, G.: Global quadratic minimization over bivalent constraints: Necessary and sufficient global optimality condition. Journal of Optimization Theory and Applications, 1–17 (2012)
Lofberg, J.: YALMIP: A toolbox for modeling and optimization in matlab. In: Int. Symp. on Computer Aided Control Systems Design, pp. 284–289 (2004)
Lu, F., Hartley, R.I.: A Fast Optimal Algorithm for L 2 Triangulation. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007, Part II. LNCS, vol. 4844, pp. 279–288. Springer, Heidelberg (2007)
Moré, J.: Generalizations of the trust region problem. Optimization methods and Software 2(3-4), 189–209 (1993)
Nocedal, J., Wright, S.: Numerical Optimization. Springer (1999)
Olsson, C., Kahl, F., Hartley, R.: Projective least-squares: Global solutions with local optimization. In: CVPR, pp. 1216–1223 (2009)
Pinar, M.: Sufficient global optimality conditions for bivalent quadratic optimization. Journal of Optimization Theory and Applications 122(2), 433–440 (2004)
Shafarevich, I.: Basic Algebraic Geometry I: Varieties in Projective Space. Springer (1998)
Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: Exploring photo collections in 3d. In: SIGGRAPH, pp. 835–846 (2006)
Stewenius, H., Schaffalitzky, F., Nister, D.: How hard is 3-view triangulation really? In: ICCV, pp. 686–693 (2005)
Sturm, J.: Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones. Opt. Meth. and Soft. 11-12, 625–653 (1999)
Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Review 38(1), 49–95 (1996)
Zheng, X., Sun, X., Li, D., Xu, Y.: On zero duality gap in nonconvex quadratic programming problems. Journal of Global Optimization 52(2), 229–242 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Aholt, C., Agarwal, S., Thomas, R. (2012). A QCQP Approach to Triangulation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds) Computer Vision – ECCV 2012. ECCV 2012. Lecture Notes in Computer Science, vol 7572. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33718-5_47
Download citation
DOI: https://doi.org/10.1007/978-3-642-33718-5_47
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33717-8
Online ISBN: 978-3-642-33718-5
eBook Packages: Computer ScienceComputer Science (R0)