Abstract
We address the problem of visual tracking of arbitrary objects that undergo significant scale and appearance changes. The classical tracking methods rely on the bounding box surrounding the target object. Regardless of the tracking approach, the use of bounding box quite often introduces background information. This information propagates in time and its accumulation quite often results in drift and tracking failure. This is particularly the case with the particle filtering approach that is often used for visual tracking. However, it always uses a bounding box around the object to compute features of the particle samples. Since this causes the drift, we propose to use segmentation for sampling. Relying on segmentation and computing the colour and gradient orientation histograms from these segmented particle samples allows the tracker to easily adapt to the object’s deformations, occlusions, orientation, scale and appearance changes. We propose two particle sampling strategies based on segmentation. In the first, segmentation is done for every propagated particle sample, while in the second only the strongest particle sample is segmented. Depending on this decision there is obviously a trade-off between speed and performance.
We perform an exhaustive quantitative evaluation on a number of challenging sequences and compare our method with the number of state-of-the-art methods previously evaluated on those sequences. The results we obtain outperform majority of the related work, both in terms of the performance and speed.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Breitenstein, M., Reichlin, F., Leibe, B., Koller-Meier, E., Van Gool, L.: Online multiperson tracking-by-detection from a single, uncalibrated camera. IEEE Trans. on PAMI (2011)
Ikizler, N., Forsyth, D.: Searching video for complex activities with finite state models. In: CVPR (2007)
Wagner, D., Langlotz, T., Schmalstieg, D.: Robust and unobtrusive marker tracking on mobile phones. In: ISMAR (2008)
Pérez, P., Hue, C., Vermaak, J., Gangnet, M.: Color-Based Probabilistic Tracking. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part I. LNCS, vol. 2350, pp. 661–675. Springer, Heidelberg (2002)
Lu, W., Okuma, K., Little, J.: Tracking and recognizing actions of multiple hockey players using the boosted particle filter. Image and Vision Computing (2009)
Avidan, S.: Ensemble tracking. In: CVPR (2005)
Godec, M., Roth, P., Bischof, H.: Hough-based tracking of non-rigid objects. In: ICCV (2011)
Isard, M., Blake, A.: Condensation-conditional density propagation for visual tracking. IJCV (1998)
Nummiaro, K., Koller-Meier, E., Van Gool, L.: An adaptive color-based particle filter. Image and Vision Computing (2003)
Doucet, A., De Freitas, N., Gordon, N.: Sequential Monte Carlo methods in practice. Springer (2001)
Okuma, K., Taleghani, A., de Freitas, N., Little, J.J., Lowe, D.G.: A Boosted Particle Filter: Multitarget Detection and Tracking. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 28–39. Springer, Heidelberg (2004)
Bibby, C., Reid, I.: Robust Real-Time Visual Tracking Using Pixel-Wise Posteriors. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 831–844. Springer, Heidelberg (2008)
Chockalingam, P., Pradeep, N., Birchfield, S.: Adaptive fragments-based tracking of non-rigid objects using level sets. In: ICCV (2009)
Tsai, D., Flagg, M., Rehg, J.: Motion coherent tracking with multi-label mrf optimization. Algorithms (2010)
Shahed Nejhum, S., Ho, J., Yang, M.: Visual tracking with histograms and articulating blocks. In: CVPR (2008)
Javed, O., Ali, S., Shah, M.: Online detection and classification of moving objects using progressively improving detectors. In: CVPR (2005)
Grabner, H., Leistner, C., Bischof, H.: Semi-supervised On-Line Boosting for Robust Tracking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 234–247. Springer, Heidelberg (2008)
Babenko, B., Yang, M., Belongie, S.: Visual tracking with online multiple instance learning. In: CVPR (2009)
Kalal, Z., Matas, J., Mikolajczyk, K.: Pn learning: Bootstrapping binary classifiers by structural constraints. In: CVPR (2010)
Lucas, B., Kanade, T.: With an application to stereo vision. In: Proceedings DARPA Image Understanding Workrhop (1998)
Kwon, J., Lee, K.: Tracking of a non-rigid object via patch-based dynamic appearance modeling and adaptive basin hopping monte carlo sampling. In: CVPR (2009)
Gall, J., Lempitsky, V.: Class-specific hough forests for object detection. In: CVPR (2009)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR (2005)
Stoica, P., Moses, R.: Introduction to spectral analysis, vol. 51. Prentice Hall, Upper Saddle River (1997)
Rother, C., Kolmogorov, V., Blake, A.: Grabcut: Interactive foreground extraction using iterated graph cuts. ACM Transactions on Graphics, TOG (2004)
Pellegrini, S., Ess, A., Schindler, K., Van Gool, L.: You’ll never walk alone: Modeling social behavior for multi-target tracking. In: ICCV (2009)
Leibe, B., Schindler, K., Van Gool, L.: Coupled detection and trajectory estimation for multi-object tracking. In: ICCV (2007)
Ollero, A., Lacroix, S., Merino, L., Gancet, J., Wiklund, J., Remuss, V., Perez, I., Gutierrez, L., Viegas, D., Benitez, M., et al.: Multiple eyes in the skies: architecture and perception issues in the comets unmanned air vehicles project. IEEE Robotics & Automation Magazine (2005)
Lockheed-Martin: Ucf lockheed-martin uav dataset (2009), http://vision.eecs.ucf.edu/aerial/index.html
Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. IJCV (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Belagiannis, V., Schubert, F., Navab, N., Ilic, S. (2012). Segmentation Based Particle Filtering for Real-Time 2D Object Tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds) Computer Vision – ECCV 2012. ECCV 2012. Lecture Notes in Computer Science, vol 7575. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33765-9_60
Download citation
DOI: https://doi.org/10.1007/978-3-642-33765-9_60
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33764-2
Online ISBN: 978-3-642-33765-9
eBook Packages: Computer ScienceComputer Science (R0)