Abstract
People re-identification is a fundamental operation for any multi-camera surveillance scenario. Until now, it has been performed by exploiting primarily appearance cues, hypothesizing that the individuals cannot change their clothes. In this paper, we relax this constraint by presenting a set of 3D soft-biometric cues, being insensitive to appearance variations, that are gathered using RGB-D technology. The joint use of these characteristics provides encouraging performances on a benchmark of 79 people, that have been captured in different days and with different clothing. This promotes a novel research direction for the re-identification community, supported also by the fact that a new brand of affordable RGB-D cameras have recently invaded the worldwide market.
Chapter PDF
Similar content being viewed by others
References
Gray, D., Tao, H.: Viewpoint Invariant Pedestrian Recognition with an Ensemble of Localized Features. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 262–275. Springer, Heidelberg (2008)
Farenzena, M., Bazzani, L., Perina, A., Murino, V., Cristani, M.: Person re-identification by symmetry-driven accumulation of local features. In: CVPR (2010)
Zheng, W.S., Gong, S., Xiang, T.: Person re-identification by probabilistic relative distance comparison. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 649–656. IEEE (2011)
Velardo, C., Dugelay, J.-L.: Improving identification by pruning: a case study on face recognition and body soft biometric. Eurecom, Tech. Rep. EURECOM+3593 (January 2012)
Wang, Y.-F., Chang, E.Y., Cheng, K.P.: A video analysis framework for soft biometry security surveillance. In: Proceedings of the third ACM International Workshop on Video Surveillance & Sensor Networks, VSSN 2005, pp. 71–78 (2005)
Demirkus, M., Garg, K.: Automated person categorization for video surveillance using soft biometrics. In: Proc of SPIE, Biometric Technology (2010)
Dantcheva, A., Dugelay, J.-L., Elia, P.: Person recognition using a bag of facial soft biometrics (BoFSB). In: 2010 IEEE International Workshop on Multimedia Signal Processing, pp. 511–516. IEEE (October 2010)
Freedman, B., Shpunt, A., Machline, M., Ariel, Y.: US Patent - US2010/0118123 (2010)
Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A.: Real-time human pose recognition in parts from single depth images. In: CVPR 2011, pp. 1297–1304. IEEE (June 2011)
Bo, L., Lai, K., Ren, X., Fox, D.: Object recognition with hierarchical kernel descriptors. In: CVPR 2011, pp. 1729–1736. IEEE (June 2011)
Cheng, D.S., Cristani, M., Stoppa, M., Bazzani, L., Murino, V.: Custom pictorial structures for re-identification. In: British Machine Vision Conference, BMVC (2011)
Javed, O., Shafique, K., Rasheed, Z., Shah, M.: Modeling inter-camera space-time and appearance relationships for tracking across non-overlapping views. Comput. Vis. Image Underst. 109(2), 146–162 (2008)
Baltieri, D., Vezzani, R., Cucchiara, R.: SARC3D: A New 3D Body Model for People Tracking and Re-identification. In: Maino, G., Foresti, G.L. (eds.) ICIAP 2011, Part I. LNCS, vol. 6978, pp. 197–206. Springer, Heidelberg (2011)
OpenNI (February 2012) Openni framework@ONLINE, http://www.openni.org/
Marton, Z.C., Rusu, R.B., Beetz, M.: On Fast Surface Reconstruction Methods for Large and Noisy Datasets. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan, May 12-17 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Barbosa, I.B., Cristani, M., Del Bue, A., Bazzani, L., Murino, V. (2012). Re-identification with RGB-D Sensors. In: Fusiello, A., Murino, V., Cucchiara, R. (eds) Computer Vision – ECCV 2012. Workshops and Demonstrations. ECCV 2012. Lecture Notes in Computer Science, vol 7583. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33863-2_43
Download citation
DOI: https://doi.org/10.1007/978-3-642-33863-2_43
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33862-5
Online ISBN: 978-3-642-33863-2
eBook Packages: Computer ScienceComputer Science (R0)