Abstract
Knowledge of scene irradiance is necessary in many computer vision algorithms. In this paper, we develop a technique to obtain the high dynamic range (HDR) irradiance of a scene from a set of differently exposed images captured using a hand-held camera. Any incidental motion induced by camera-shake can result in non-uniform motion blur. This is particularly true for frames captured with high exposure durations. We model the motion blur using a transformation spread function (TSF) that represents space-variant blurring as a weighted average of differently transformed versions of the latent image. We initially estimate the TSF of the blurred frames and then estimate the latent irradiance of the scene.
Chapter PDF
Similar content being viewed by others
Keywords
- High Dynamic Range
- Blur Kernel
- High Dynamic Range Image
- Total Variation Regularization
- Camera Response Function
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Reinhard, E., Heidrich, W., Pattanaik, S., Debevec, P., Ward, G., Myszkowski, K.: High dynamic range imaging: acquisition, display, and image-based lighting. Morgan Kaufmann (2010)
Debevec, P.E., Malik, J.: Recovering high dynamic range radiance maps from photographs. In: ACM SIGGRAPH (1997)
Mann, S., Picard, R.W.: On being ’undigital’ with digital cameras: Extending dynamic range by combining differently exposed pictures. Citeseer (1995)
Mitsunaga, T., Nayar, S.K.: Radiometric self calibration. In: Proc. CVPR (1999)
Fattal, R., Lischinski, D., Werman, M.: Gradient domain high dynamic range compression. ACM Trans. on Graph. 21 (2002)
Reinhard, E., Ward, G., Pattanaik, S., Debevec, P.: High dynamic range imaging. Elsevier (2006)
Mertens, T., Kautz, J., Van Reeth, F.: Exposure fusion. In: Pacific Conf. on Computer Graph. and App. (2007)
Raskar, R., Ilie, A., Yu, J.: Image fusion for context enhancement and video surrealism. In: ACM SIGGRAPH 2005 Courses (2005)
Ward, G.: Fast, robust image registration for compositing high dynamic range photographs from hand-held exposures. Journal of Graphics Tools 8, 17–30 (2003)
Rav-Acha, A., Peleg, S.: Two motion-blurred images are better than one. Pattern Recognition Letters 26 (2005)
Yuan, L., Sun, J., Quan, L., Shum, H.: Image deblurring with blurry/noisy image pairs. ACM Trans. Graph. (26)
Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., Freeman, W.T.: Removing camera shake from a single photograph. ACM Trans. on Graphics 25 (2006)
Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Understanding and evaluating blind deconvolution algorithms. In: Proc. CVPR (2009)
Whyte, O., Sivic, J., Zisserman, A., Ponce, J.: Non-uniform deblurring for shaken images. In: Proc. CVPR (2010)
Gupta, A., Joshi, N., Lawrence Zitnick, C., Cohen, M., Curless, B.: Single Image Deblurring Using Motion Density Functions. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 171–184. Springer, Heidelberg (2010)
Tai, Y., Tan, P., Brown, M.S.: Richardson-lucy deblurring for scenes under projective motion path. IEEE Trans. PAMI 33 (2011)
Whyte, O., Sivic, J., Zisserman, A.: Deblurring shaken and partially saturated images. In: IEEE Workshop CPCV, with ICCV (2011)
Cho, S., Wang, J., Lee, S.: Handling outliers in non-blind image deconvolution. In: Proc. ICCV (2011)
Lu, P.Y., Huang, T.H., Wu, M.S., Cheng, Y.T., Chuang, Y.Y.: High dynamic range image reconstruction from hand-held cameras. In: Proc. CVPR (2009)
Chandramouli, P., Rajagopalan, A.N.: Inferring image transformation and structure from motion-blurred images. In: Proc. of the BMVC (2010)
Liu, J., Ji, S., Ye, J.: Slep: sparse learning with efficient projections (2009), http://www.public.asu.edu/~jye02/Software/SLEP
Supplementary material: Transformation spread function estimation (2012) Supplied as additional material SupMaterial.pdf
Reinhard, E., Stark, M., Shirley, P., Ferwerda, J.: Photographic tone reproduction for digital images. ACM Transactions on Graphics 21 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Vijay, C.S., Chandramouli, P., Ambasamudram, R. (2012). HDR Imaging under Non-uniform Blurring. In: Fusiello, A., Murino, V., Cucchiara, R. (eds) Computer Vision – ECCV 2012. Workshops and Demonstrations. ECCV 2012. Lecture Notes in Computer Science, vol 7584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33868-7_45
Download citation
DOI: https://doi.org/10.1007/978-3-642-33868-7_45
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33867-0
Online ISBN: 978-3-642-33868-7
eBook Packages: Computer ScienceComputer Science (R0)