Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Gait Analysis for a Human with a Robot Walking Helper

  • Chapter
Intelligent Autonomous Systems 12

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 193))

  • 4191 Accesses

Abstract

With the growth of elderly population in our society, intelligent walking aids will play an important role in providing functional mobility to humans. In this paper, we propose a model to compute gait of humans walking with a robot helper. This model is aimed at designing a control system for the robot walking helper. The human model includes both the single support phase and impacts. Since a human will be walking along with the robot with its help, geometrical constraints and interaction forces are included. To achieve stable walking, zero moment point (ZMP) is utilized in the analysis and friction constraint is included within the reaction force from the ground. Simulations are performed to obtain optimal gait trajectories, the human applied joint torques, and the supporting forces from the robot walking helper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yu, H., Spenko, M., Dubowsky, S.: An adaptive shared control system for an intelligent mobility aid for the elderly. Auton. Robots 15(1), 53–66 (2003)

    Article  Google Scholar 

  2. Chuy, O., Hirata, Y., Wang, Z., Kosuge, K.: A control approach based on passive behavior to enhance user interaction. IEEE Trans. Robotics 23(5), 899–908 (2007)

    Article  Google Scholar 

  3. Rentschler, A.J., Cooper, R.A., Blaschm, B., Boninger, M.L.: Intelligent walkers for the elderly: Performance and safety testing of VA-PAMAID robotic walker. J. Rehab. Res. Dev. 40(5), 423–432 (2003)

    Article  Google Scholar 

  4. Wasson, G., Sheth, P., Alwan, M., Granata, K., Ledoux, A., Huang, C.: User intent in a shared control framework for pedestrian mobility aids. In: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 2962–2967 (2003)

    Google Scholar 

  5. Sabatini, A.M., Genovese, V., Pacchierotti, E.: A mobility aid for the support to walking and object transportation of people with motor impairments. In: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 1349–1354 (2002)

    Google Scholar 

  6. Spenko, M., Yu, H., Dubowsky, S.: Robotic personal aids for mobility and monitoring for the elderly. IEEE Transactions on Neural Systems and Rehabilitation Engineering 14(3), 344–351 (2006)

    Article  Google Scholar 

  7. Hirata, Y., Hara, A., Kosuge, K.: Motion control of passive intelligent walker using servo brakes. IEEE Trans. Robotics 23(5), 981–990 (2007)

    Article  Google Scholar 

  8. Ryu, J.C., Pathak, K., Agrawal, S.K.: Control of a passive mobility assist robot. Journal of Medicial Devices 2, 011002 (7 pages) (2008)

    Google Scholar 

  9. Yu, S.H., Ko, C.H., Young, K.Y.: On the design of a robot walking helper with human intension and envoronmental sensing. In: Proc. CACS Int. Auto. Cont. Conf. (2008)

    Google Scholar 

  10. Ko, C.H., Agrawal, S.K.: Control and path planning of a walk-assist robot using differential flatness. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 6016–6021 (2010)

    Google Scholar 

  11. Hirata, Y., Komatsuda, S., Kosuge, K.: Fall prevention control of passive intelligent walker based on human model. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1222–1228 (2008)

    Google Scholar 

  12. Hirata, Y., Komatsuda, S., Iwano, T., Kosuge, K.: Motion control of walking assist robot system based on human model. In: International Conference on Biomedical Engineering, pp. 2232–2236 (2008)

    Google Scholar 

  13. Nakano, K., Murakami, T.: An approach to guidance motion by gait-training equipment in semipassive walking. IEEE Trans. Industrial Electronics 55(4), 1707–1714 (2008)

    Article  Google Scholar 

  14. Chevallereau, C., Djoudi, D., Grizzle, J.W.: Stable bipedal walking with foot rotation through direct regulation of the zero moment point. IEEE Trans. Robotics 24(2), 390–401 (2008)

    Article  Google Scholar 

  15. Agrawal, A., Agrawal, S.K.: An approach to identify joint motions for dynamically stable walking. Journal of Mechanical Design, Transactions of ASME 128, 649–653 (2006)

    Article  Google Scholar 

  16. Tlalolini, D., Aoustin, Y., Chevallereau, C.: Design of a walking cyclic gait with single support phases and impacts for the locomotor system of a thirteen-link 3D biped using the parametric optimization. Multibody Syst. Dyn. 23(1), 33–56 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chevallereau, C., Aoustin, Y.: Optimal reference trajectories for walking and running of a biped robot. Robotica 19(5), 557–569 (2001)

    Article  Google Scholar 

  18. Wu, T.-Y., Yeh, T.-J.: Optimal design and implementation of an energy-efficient semi-active biped. Robotica 27(6), 841–852 (2009)

    Article  Google Scholar 

  19. Grizzle, J.W., Abba, G., Plestan, F.: Asymptotically stable walking for biped robots: analysis via systems with impulse effects. IEEE Tran. on Automatoc Control 46(1), 51–64 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hurmuzlu, Y., Marghitu, D.B.: Rigid body collisions of planar kinematic chains with multiple contact points. Int. J. Robot. Res. 13(1), 82–92 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Hsu Ko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ko, CH., Young, KY., Agrawal, S.K. (2013). Gait Analysis for a Human with a Robot Walking Helper. In: Lee, S., Cho, H., Yoon, KJ., Lee, J. (eds) Intelligent Autonomous Systems 12. Advances in Intelligent Systems and Computing, vol 193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33926-4_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33926-4_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33925-7

  • Online ISBN: 978-3-642-33926-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics