Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Cooperation without Exploitation between Self-interested Agents

  • Conference paper
Intelligent Autonomous Systems 12

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 194))

Abstract

We study how two self-interested agents that play a sequence of randomly generated normal form games, each game played once, can achieve cooperation without being exploited. The agent learns if the opponent is willing to cooperate by tracking the attitude of its opponent, which tells how much the opponent values its own payoff relative to the agent’s payoff. We present experimental results obtained against different types of non-stationary opponents. The results show that a small number of games is sufficient to achieve cooperation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Au, T.C., Kraus, S., Nau, D.: Symbolic noise detection in the noisy iterated chicken game and the noisy iterated battle of the sexes. In: Proceeding of the First International Conference on Computational Cultural Dynamics, ICCCD 2007 (2007)

    Google Scholar 

  2. Axelrod, R.M.: The evolution of cooperation. Basic Books (1984)

    Google Scholar 

  3. Camerer, C.F.: Progress in behavioral game theory. The Journal of Economic Perspectives 11(4), 167–188 (1997)

    Article  Google Scholar 

  4. Conitzer, V., Sandholm, T.: AWESOME: A general multiagent learning algorithm that converges in self-play and learns a best response against stationary opponents. Machine Learning 67(1-2), 23–43 (2007)

    Article  Google Scholar 

  5. Crandall, J.W., Goodrich, M.A.: Learning to compete, cooperate, and compromise using reinforcement learning. Machine Learning (2010)

    Google Scholar 

  6. Damer, S., Gini, M.: Achieving cooperation in a minimally constrained environment. In: Proc. of the Nat’l Conf. on Artificial Intelligence, pp. 57–62 (2008)

    Google Scholar 

  7. Damer, S., Gini, M.: Extended abstract: Friend or foe? detecting an opponent’s attitude in normal form games. In: Proc. Int’l Conf. on Autonomous Agents and Multi-Agent Systems (2011)

    Google Scholar 

  8. Fitzgerald, B.D.: Self-interest or altruism. Journal of Conflict Resolution 19, 462–479 (1975)

    Google Scholar 

  9. Frohlich, N.: Self-Interest or Altruism, What Difference? Journal of Conflict Resolution 18(1), 55–73 (1974)

    Article  Google Scholar 

  10. Fudenberg, D., Levine, D.K.: The Theory of Learning in Games. MIT Press (1998)

    Google Scholar 

  11. McClintock, C.G., Allison, S.T.: Social value orientation and helping behavior. Journal of Applied Social Psychology 19(4), 353–362 (1989)

    Article  Google Scholar 

  12. Musso, C., Oudjane, N., Legland, F.: Improving regularized particle filters. In: Doucet, A., de Freitas, N., Gordon, N. (eds.) Sequential Monte Carlo Methods in Practice, pp. 247–271. Springer, New York (2001), citeseer.ist.psu.edu/musso01improving.html

    Google Scholar 

  13. Nowak, M.A.: Five rules for the evolution of cooperation. Science 314, 1560–1563 (2006)

    Article  Google Scholar 

  14. Powers, R., Shoham, Y., Vu, T.: A general criterion and an algorithmic framework for learning in multi-agent systems. Machine Learning 67(1-2), 45–76 (2007)

    Article  Google Scholar 

  15. Shapley, L.S.: Stochastic games. Proceedings of the NAS 39, 1095–1100 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  16. Valavanis, S.: The resolution of conflict when utilities interact. The Journal of Conflict Resolution 2(2), 156–169 (1958), http://www.jstor.org/stable/172973

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Damer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Damer, S., Gini, M. (2013). Cooperation without Exploitation between Self-interested Agents. In: Lee, S., Cho, H., Yoon, KJ., Lee, J. (eds) Intelligent Autonomous Systems 12. Advances in Intelligent Systems and Computing, vol 194. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33932-5_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33932-5_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33931-8

  • Online ISBN: 978-3-642-33932-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics