Abstract
The huge amount of information available and its heterogeneity has surpassed the capacity of current data management technologies. Dealing with that huge amounts of structured and unstructured data, often referred as Big Data, is a hot research topic and a technological challenge. In this paper, we present an approach aimed to allow OLAP queries over different, heterogeneous, data sources. The modeling approach proposed is based on a MapReduce paradigm, which integrates different formats into the recent RDF Data Cube format. The benefits of our approach are that it allows a user to make queries that need data from different sources while maintaining, at the same time, an integrated, comprehensive view of the data available. The paper discusses the advantages and disadvantages, as well as the implementation challenges that such approach presents. Furthermore, the approach is illustrated in an example of application.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abelló, A., Samos, J., Saltor, F.: Yam2: a multidimensional conceptual model extending uml. Information Systems 31(6), 541–567 (2006)
Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far. International Journal on Semantic Web and Information Systems (IJSWIS) 5(3), 1–22 (2009)
Cohen, J., Dolan, B., Dunlap, M., Hellerstein, J., Welton, C.: Mad skills: new analysis practices for big data. Proceedings of the VLDB Endowment 2(2), 1481–1492 (2009)
Klyne, G., Carroll, J., McBride, B.: Resource description framework (rdf): Concepts and abstract syntax. W3C recommendation 10 (2004)
Kulkarni, P.: Distributed SPARQL query engine using MapReduce. Master’s thesis, http://www.inf.ed.ac.uk/publications/thesis/online/IM100832.pdf
Luján-Mora, S., Trujillo, J., Song, I.: A uml profile for multidimensional modeling in data warehouses. Data & Knowledge Engineering 59(3), 725–769 (2006)
Masinter, L., Berners-Lee, T., Fielding, R.: Uniform resource identifier (uri): Generic syntax (2005)
Myung, J., Yeon, J., Lee, S.G.: Sparql basic graph pattern processing with iterative mapreduce. In: Proceedings of the 2010 Workshop on Massive Data Analytics on the Cloud, MDAC 2010, pp. 6:1–6:6. ACM (2010)
Niemi, T., Niinimäki, M., Nummenmaa, J., Thanisch, P.: Constructing an olap cube from distributed xml data. In: Proceedings of the 5th ACM International Workshop on Data Warehousing and OLAP, pp. 22–27. ACM (2002)
Quilitz, B., Leser, U.: Querying Distributed RDF Data Sources with SPARQL. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 524–538. Springer, Heidelberg (2008)
Tryfona, N., Busborg, F., Borch Christiansen, J.: starer: A conceptual model for data warehouse design. In: Proceedings of the 2nd ACM International Workshop on Data Warehousing and OLAP, pp. 3–8. ACM (1999)
Uschold, M., Gruninger, M.: Ontologies: Principles, methods and applications. Knowledge Engineering Review 11(2), 93–136 (1996)
White, T.: Hadoop: The Definitive guide (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Maté, A., Llorens, H., de Gregorio, E. (2012). An Integrated Multidimensional Modeling Approach to Access Big Data in Business Intelligence Platforms. In: Castano, S., Vassiliadis, P., Lakshmanan, L.V., Lee, M.L. (eds) Advances in Conceptual Modeling. ER 2012. Lecture Notes in Computer Science, vol 7518. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33999-8_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-33999-8_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33998-1
Online ISBN: 978-3-642-33999-8
eBook Packages: Computer ScienceComputer Science (R0)