Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Investigating the Relation between Users’ Cognitive Style and Web Navigation Behavior with K-means Clustering

  • Conference paper
Advances in Conceptual Modeling (ER 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7518))

Included in the following conference series:

Abstract

This paper focuses on modeling users’ cognitive style based on a set of Web usage mining techniques on navigation patterns and clickstream data. Main aim is to investigate whether k-means clustering can group users of particular cognitive style using measures obtained from a series of psychometric tests and content navigation behavior. Three navigation metrics are proposed and used to find identifiable groups of users that have similar navigation patterns in relation to their cognitive style. The proposed work has been evaluated with a user study which entailed a psychometric-based method for extracting the users’ cognitive styles, combined with a real usage scenario of users navigating in a controlled Web environment. A total of 22 participants of age between 20 and 25 participated in the reported study providing interesting insights with respect to cognitive styles and navigation behavior of users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brusilovsky, P., Millán, E.: User Models for Adaptive Hypermedia and Adaptive Educational Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 3–53. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Frias-Martinez, E., Magoulas, G., Chen, S., Macredie, R.: Modeling Human Behavior in User-Adaptive Systems: Recent Advances Using Soft Computing Technique. J. Expert Systems with Applications 29(2), 320–329 (2005)

    Article  Google Scholar 

  3. Eirinaki, M., Vazirgiannis, M.: Web Mining for Web Personalization. J. ACM Transactions on Internet Technology 3(1), 1–27 (2003)

    Article  Google Scholar 

  4. Mobasher, B.: Data Mining for Web Personalization. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 90–135. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Nasraoui, O., Soliman, M., Saka, E., Badia, A., Germain, R.: A Web Usage Mining Framework for Mining Evolving User Profiles in Dynamic Web Sites. J. IEEE Transactions on Knowledge and Data Engineering 20(2), 202–215 (2008)

    Article  Google Scholar 

  6. Perkowitz, M., Etzioni, O.: Adaptive Web Sites. Communications of the ACM 43(8), 152–158 (2000)

    Article  Google Scholar 

  7. Castellano, G., Torsello, M.A.: Categorization of Web Users by Fuzzy Clustering. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds.) KES 2008, Part II. LNCS (LNAI), vol. 5178, pp. 222–229. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Castellano, G., Fanelli, A., Mencar, C., Torsello, M.: Similarity-Based Fuzzy Clustering for User Profiling. In: Conferences on Web Intelligence and Intelligent Agent Technology Workshops, pp. 75–78. IEEE Computer Society, Washington, USA (2007)

    Chapter  Google Scholar 

  9. Frias-Martinez, E., Chen, S., Macredie, R., Liu, X.: The Role of Human Factors in Stereotyping Behavior and Perception of Digital Library Users: A Robust Clustering Approach. J. User Modeling and User-Adapted Interaction 17(3), 305–337 (2007)

    Article  Google Scholar 

  10. Antoniou, A., Lepouras, G.: Modeling Visitors’ Profiles: A Study to Investigate Adaptation Aspects for Museum Learning Technologies. J. Computing Cultural Heritage 3(2), 1–19 (2010)

    Article  Google Scholar 

  11. Riding, R., Cheema, I.: Cognitive styles - An Overview and Integration. J. Educational Psychology 11(3/4), 193–215 (1991)

    Google Scholar 

  12. Felder, R., Silverman, L.: Learning and Teaching Styles in Engineering Education. J. Engineering Education 78(7), 674–681 (1988)

    Google Scholar 

  13. Witkin, H., Moore, C., Goodenough, D., Cox, P.: Field-dependent and Field-independent Cognitive Styles and their Educational Implications. Review of Educational Research 47(1), 1–64 (1977)

    Google Scholar 

  14. Aldenderfer, M., Blashfield, R.: Cluster Analysis. Sage Publications, Newbury Park (1984)

    Google Scholar 

  15. Mann, H., Whitney, D.: On a Test of Whether One of Two Random Variables is Stochastically Larger than the Other. J. Annals of Mathematical Statistics 1(8), 50–60 (1947)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Belk, M., Papatheocharous, E., Germanakos, P., Samaras, G. (2012). Investigating the Relation between Users’ Cognitive Style and Web Navigation Behavior with K-means Clustering. In: Castano, S., Vassiliadis, P., Lakshmanan, L.V., Lee, M.L. (eds) Advances in Conceptual Modeling. ER 2012. Lecture Notes in Computer Science, vol 7518. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33999-8_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33999-8_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33998-1

  • Online ISBN: 978-3-642-33999-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics