Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On Soft Partition Attribute Selection

  • Conference paper
Information Computing and Applications (ICICA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7473))

Included in the following conference series:

  • 5114 Accesses

Abstract

Rough set theory provides a methodology for data analysis based on the approximation of information systems. It is revolves around the notion of discernibility i.e. the ability to distinguish between objects based on their attributes value. It allows inferring data dependencies that are useful in the fields of feature selection and decision model construction. Since it is proven that every rough set is a soft set, therefore, within the context of soft sets theory, we present a soft set-based framework for partition attribute selection. The paper unifies existing work in this direction, and introduces the concepts of maximum attribute relative to determine and rank the attribute in the multi-valued information system. Experimental results demonstrate the potentiality of the proposed technique to discover the attribute subsets, leading to partition selection models which better coverage and achieve lower computational time than that the baseline techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pawlak, Z.: Rough sets. International Journal of Computer and Information Science 11, 341–356 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Pawlak, Z.: Rough Sets - Theoretical Aspect of Reasoning about Data. Kluwer Academic Publisher, Boston (1991)

    Google Scholar 

  3. Mazlack, L.J., He, A., Zhu, Y., Coppock, S.: A Rough Sets Approach in Choosing Partitioning Attributes. In: Proceeding of ICSA 13th International Conference, CAINE 2000, pp. 1–6 (2000)

    Google Scholar 

  4. Parmar, D., Wu, T., Blackhurst, J.: MMR: An Algorithm for Clustering Categorical Data using Rough Set Theory. Data and Knowledge Discovery 63, 879–893 (2007)

    Article  Google Scholar 

  5. Herawan, T., Deris, M.M., Abawajy, J.H.: A Rough Set Approach for Selecting Clustering Attribute. Knowledge Based System 23, 220–231 (2010)

    Article  Google Scholar 

  6. Molodtsov, D.: Soft set theory - First results. Computer and Mathematics with Applications 37, 19–31 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Maji, P.K., Biswas, R., Roy, A.R.: Fuzzy soft sets. Journal of Fuzzy Mathematics 9, 589–602 (2001)

    MathSciNet  MATH  Google Scholar 

  8. Maji, P.K., Biswas, R., Roy, A.R.: Soft Set Theory. Computer and Mathematics with Applications 45, 555–562 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ali, M.I., Feng, F., Liu, X., Min, W.K., Shabira, M.: On some new operation in soft sets theory. Computer and Mathematics with Applications 57, 1547–1553 (2009)

    Article  MATH  Google Scholar 

  10. Maji, P.K., Roy, A.R., Biswas, R.: An application of soft sets in a decision making problem. Computer and Mathematics with Applications 44, 1077–1083 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Roy, A.R., Maji, P.K.: A fuzzy soft set theoretic approach to decision making problems. Journal of Computational and Applied Mathematics 203, 412–418 (2007)

    Article  MATH  Google Scholar 

  12. Kong, Z., Gao, L., Wang, L.: Comment on “A fuzzy soft set theoretic approach to decision making problems”. Journal of Computational and Applied Mathematics 223, 540–542 (2009)

    Article  MATH  Google Scholar 

  13. Herawan, T., Rose, A.N.M., Mat Deris, M.: Soft Set Theoretic Approach for Dimensionality Reduction. In: Ślęzak, D., Kim, T.-H., Zhang, Y., Ma, J., Chung, K.-I. (eds.) DTA 2009. CCIS, vol. 64, pp. 171–178. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mamat, R., Herawan, T., Ahmad, N., Deris, M.M. (2012). On Soft Partition Attribute Selection. In: Liu, B., Ma, M., Chang, J. (eds) Information Computing and Applications. ICICA 2012. Lecture Notes in Computer Science, vol 7473. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34062-8_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34062-8_66

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34061-1

  • Online ISBN: 978-3-642-34062-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics