Abstract
We present a feature-based surveillance pipeline which, in contrast to traditional image-based methods, allows to learn a detailed description of the observed background as well as of foreground objects. The pipeline consists of motion segmentation of feature trajectories and subsequent tracking-by-recognition with updates. Furthermore, 3D object representations are learned in order to extract the 3D object pose of a later object recognition. Finally, we show how such sufficiently reliable information is inputted into a reasoning system comparing actual and nominal condition of an airport apron. By this, automatic situation assessment becomes possible in a manageable and reliable way.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-Schneider, P.F., Stein, L.A.: Owl web ontology language reference. Tech. rep., World Wide Web Consortium (2009)
Bhargava, M., Chen, C.C., Ryoo, M.S., Aggarwal, J.K.: Detection of object abandonment using temporal logic. Mach. Vis. Appl., 271–281 (2009)
Bhat, S., Berger, M.O., Sur, F.: Visual words for 3D Reconstruction and Pose Computation. In: The First Joint 3DIM/3DPVT Conference (March 2011)
Boley, H., Hallmark, G., Kifer, M., Paschke, A., Polleres, A., Reynolds, D.: Rif core dialect. Tech. rep., World Wide Web Consortium (2010)
Brox, T., Malik, J.: Object Segmentation by Long Term Analysis of Point Trajectories. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 282–295. Springer, Heidelberg (2010)
Buch, N., Velastin, S., Orwell, J.: A review of computer vision techniques for the analysis of urban traffic. IEEE Transactions on Intelligent Transportation Systems 12(3), 920–939 (2011)
Calderara, S., Melli, R., Prati, A., Cucchiara, R.: Reliable background suppression for complex scenes. In: Proc. ACM Video Surveillance and Sensor Networks (VSSN), pp. 211–214 (2006)
Carpenter, G.A., Grossberg, S.: The art of adaptive pattern recognition by a self-organizing neural network. Computer 21(3), 77–88 (1988)
Chen, G., Lerman, G.: Motion segmentation by scc on the hopkins 155 database. In: Proc. ICCV Workshop on Dynamical Vision (2009)
Chen, Y.T., Chen, C.S., Huang, C.R., Hung, Y.P.: Efficient hierarchical method for background subtraction. Pattern Recogn. 40, 2706–2715 (2007)
Dragon, R., Shoaib, M., Rosenhahn, B., Ostermann, J.: NF-Features – No-Feature-Features for Representing Non-textured Regions. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312, pp. 128–141. Springer, Heidelberg (2010)
Elhamifar, E., Vidal, R.: Sparse subspace clustering. In: Proc. CVPR, pp. 2790–2797 (2009)
Favaro, P., Vidal, R., Ravichandran, A.: A closed form solution to robust subspace estimation and clustering. In: Proc. CVPR, pp. 1801–1807 (2011)
Fischler, M., Bolles, R.: Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Communications of the ACM 24(6), 381–395 (1981)
Flight Safety Foundation: Ground accident prevention ramp operational safety procedures, http://flightsafety.org/archives-and-resources/ground-accident-prevention-gap
Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern match problem. Artificial Intelligence 19(1), 17–37 (1982)
Fradet, M., Robert, P., Perez, P.: Clustering point trajectories with various life-spans. In: Proc. CVMP, pp. 7–14 (2009)
Gordon, I., Lowe, D.G.: What and Where: 3D Object Recognition with Accurate Pose. In: Ponce, J., Hebert, M., Schmid, C., Zisserman, A. (eds.) Toward Category-Level Object Recognition. LNCS, vol. 4170, pp. 67–82. Springer, Heidelberg (2006)
Green, M.W.: The appropriate and effective use of security technologies in U.S. schools. Tech. rep., Sandia National Laboratories (September 1999)
Hsiao, E., Collet, A., Hebert, M.: Making Specific Features Less Discriminative to Improve Point-Based 3D Object Recognition. In: CVPR, pp. 2653–2660 (2010)
Irschara, A., Zach, C., Frahm, J.M., Bischof, H.: From Structure-from-Motion Point Clouds to Fast Location Recognition. In: CVPR, pp. 2599–2606. IEEE (2009)
Lepetit, V., Moreno-Noguer, F., Fua, P.: EPnP: An Accurate O(n) Solution to the PnP Problem. IJCV 81, 155–166 (2009)
Li, Y., Snavely, N., Huttenlocher, D.P.: Location Recognition Using Prioritized Feature Matching. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312, pp. 791–804. Springer, Heidelberg (2010)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60, 91–110 (2004)
Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image and Vision Computing (2004)
Mikolajcyk, K., Schmid, C.: An affine invariant interest point detector. In: Proc. ICCV (2002)
Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. Transactions on Pattern Analysis and Machine Intelligence 27(10), 1615–1630 (2005)
Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In: Proc. NIPS, pp. 849–856 (2001)
Park, Y., Lepetit, V., Woo, W.: Multiple 3D Object tracking for augmented reality. In: ISMAR, pp. 117–120 (September 2008)
Parks, D.H., Fel, S.S.: Evaluation of background subtraction algorithms with post-processing. In: AVSS, pp. 192–199 (2008)
Radke, R.J., Andra, S., Al-Kofahi, O., Roysam, B.: Image change detection algorithms: a systematic survey. IEEE Transactions on Image Processing 14(3), 294–307 (2005)
Rothganger, F., Lazebnik, S., Schmid, C., Ponce, J.: 3d object modeling and recognition using local affine-invariant image descriptors and multi-view spatial constraints. IJCV 66(3), 231–259 (2006)
Russell, S., Norvig, P.: Inference in First-Order Logic. In: Artificial Intelligence: A Modern Approach, ch. 9. Prentice Hall (2009)
Setiawan, N.A., Seok-Ju, H., Jang-Woon, K., Chil-Woo, L.: Gaussian Mixture Model in Improved HLS Color Space for Human Silhouette Extraction. In: Pan, Z., Cheok, D.A.D., Haller, M., Lau, R., Saito, H., Liang, R. (eds.) ICAT 2006. LNCS, vol. 4282, pp. 732–741. Springer, Heidelberg (2006)
Sheikh, Y., Javed, O., Kanade, T.: Background subtraction for freely moving cameras. In: Proc. ICCV, pp. 1219–1225 (2009)
Shi, J., Tomasi, C.: Good features to track. In: Proc. CVPR, pp. 593–600 (June 1994)
Shoaib, M., Dragon, R., Ostermann, J.: View-invariant fall detection for elderly in real home environment. In: PSIVT (November 2010)
Sivic, J., Schaffalitzky, F., Zisserman, A.: Object level grouping for video shots. IJCV 67(2), 189–210 (2006)
Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: CVPR, pp. 2246–2252 (1999)
Weinzaepfel, P., Jgou, H., Prez, P.: Reconstructing an image from its local descriptors. In: CVPR (2011)
Wren, C., Azarbayejani, A., Darrell, T., Pentland, A.: Pfinder: Real-time tracking of the human body. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 780–785 (1997)
Yu, J., Chin, T.J., Suter, D.: A global optimization approach to robust multi-model fitting. In: Proc. CVPR (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dragon, R., Fenzi, M., Siberski, W., Rosenhahn, B., Ostermann, J. (2012). Towards Feature-Based Situation Assessment for Airport Apron Video Surveillance. In: Dellaert, F., Frahm, JM., Pollefeys, M., Leal-Taixé, L., Rosenhahn, B. (eds) Outdoor and Large-Scale Real-World Scene Analysis. Lecture Notes in Computer Science, vol 7474. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34091-8_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-34091-8_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34090-1
Online ISBN: 978-3-642-34091-8
eBook Packages: Computer ScienceComputer Science (R0)