Abstract
An arc-annotated sequence is a sequence, over a given alphabet, with additional structure described by a set of arcs, each arc joining a pair of positions in the sequence. As a natural extension of the longest common subsequence problem, Evans introduced the Longest Arc-Preserving Common Subsequence (LAPCS) problem as a framework for studying the similarity of arc-annotated sequences. This problem has been studied extensively in the literature due to its potential application for RNA structure comparison, but also because it has a compact definition. In this paper, we focus on the nested case where no two arcs are allowed to cross because it is widely considered the most important variant in practice. Our contributions are three folds: (i) we revisit the nice NP-hardness proof of Lin et al. for LAPCS(Nested, Nested), (ii) we improve the running time of the FPT algorithm of Alber et al. from \(O(3.31^{k_1 + k_2} n)\) to \(O(3^{k_1 + k_2} n)\), where resp. k 1 and k 2 deletions from resp. the first and second sequence are needed to obtain an arc-preserving common subsequence, and (iii) we show that LAPCS(Stem, Stem) is NP-complete for constant alphabet size.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alber, J., Gramm, J., Guo, J., Niedermeier, R.: Computing the similarity of two sequences with nested arc annotations. Theoretical Computer Science 312(2-3), 337–358 (2004)
Blin, G., Crochemore, M., Vialette, S.: Algorithmic Aspects of Arc-Annotated Sequences. In: Algorithms in Computational Molecular Biology: Techniques, Approaches and Applications. Wiley (2010) (to appear)
Blin, G., Denise, A., Dulucq, S., Herrbach, C., Touzet, H.: Alignment of RNA structures. IEEE/ACM Transactions on Computational Biology and Bioinformatics (2008) (to appear)
Evans, P.A.: Algorithms and Complexity for Annotated Sequences Analysis. PhD thesis, University of Victoria (1999)
Evans, P.A.: Finding Common Subsequences with Arcs and Pseudoknots. In: Crochemore, M., Paterson, M. (eds.) CPM 1999. LNCS, vol. 1645, pp. 270–280. Springer, Heidelberg (1999)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A guide to the theory of NP-completeness. W.H. Freeman, San Francisco (1979)
Guignon, V., Chauve, C., Hamel, S.: An Edit Distance Between RNA Stem-Loops. In: Consens, M.P., Navarro, G. (eds.) SPIRE 2005. LNCS, vol. 3772, pp. 335–347. Springer, Heidelberg (2005)
Blin, G., Hamel, S., Vialette, S.: Comparing RNA Structures with Biologically Relevant Operations Cannot Be Done without Strong Combinatorial Restrictions. In: Rahman, M. S., Fujita, S. (eds.) WALCOM 2010. LNCS, vol. 5942, pp. 149–160. Springer, Heidelberg (2010)
Jiang, T., Lin, G., Ma, B., Zhang, K.: A general edit distance between RNA structures. Journal of Computational Biology 9(2), 371–388 (2002)
Jiang, T., Lin, G., Ma, B., Zhang, K.: The Longest Common Subsequence Problem for Arc-Annotated Sequences. In: Giancarlo, R., Sankoff, D. (eds.) CPM 2000. LNCS, vol. 1848, pp. 154–165. Springer, Heidelberg (2000)
Lin, G., Chen, Z.-Z., Jiang, T., Wen, J.: The longest common subsequence problem for sequences with nested arc annotations. J. of Computer and System Sc. 65, 465–480 (2002)
Shasha, D., Zhang, K.: Simple fast algorithms for the editing distance between trees and related problems. SIAM Journal on Computing 18(6), 1245–1262 (1989)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Blin, G., Jiang, M., Vialette, S. (2012). The Longest Common Subsequence Problem with Crossing-Free Arc-Annotated Sequences. In: Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N. (eds) String Processing and Information Retrieval. SPIRE 2012. Lecture Notes in Computer Science, vol 7608. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34109-0_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-34109-0_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34108-3
Online ISBN: 978-3-642-34109-0
eBook Packages: Computer ScienceComputer Science (R0)