Abstract
In this paper, we argue that a home-use autonomous mobile robot is a platform for a new kind of Intelligent Data Analysis (IDA). Recent advancement of hardware and software for robotics have enabled us to construct a small yet powerful, autonomous mobile robot from components in low cost. Such a robot is able to perform machine learning and data mining in the real world for a long period, which opens a new avenue for IDA. This paper improves and studies one of our monitoring robots in detail to reveal promising directions and challenges inherent in the new kind of IDA.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Durrant-Whyte, H., Bailey, T.: Simultaneous Localisation and Mapping (SLAM): Part I The Essential Algorithms. IEEE Robotics and Automation Magazine 13(2), 99–110 (2006)
Bailey, T., Durrant-Whyte, H.: Simultaneous Localisation and Mapping (SLAM): Part II State of the Art. IEEE Robotics and Automation Magazine 13(3), 108–117 (2006)
Boubou, S., Kouno, A., Suzuki, E.: Implementing Camshift on a Mobile Robot for Person Tracking and Pursuit. In: Proc. Eleventh IEEE International Conference on Data Mining Workshops (ICDMW 2011), pp. 682–688 (2011)
Kouno, A., Takayama, D., Suzuki, E.: Predicting the State of a Person by an Office-use Autonomous Mobile Robot. In: Proc. of IAT (accepted, 2012)
Matsumoto, E., Sebag, M., Suzuki, E.: Avoiding Humans with SVM - a Case of Small Autonomous Mobile Robot in an Office. In: Computer and Information Sciences II: 26th International Symposium on Computer and Information Sciences (ISCIS 2011), pp. 283–287 (2011)
Takano, S., Suzuki, E.: New Object Detection for On-Board Robot Vision by Lifting Complex Wavelet Transforms. In: Proc. Eleventh IEEE International Conference on Data Mining Workshops (ICDMW 2011), pp. 911–916 (2011)
Takemoto, K., Takano, S., Suzuki, E.: Human Detection by a Small Autonomous Mobile Robot. In: Extraction et Gestion des Connaissances (EGC 2012), pp. 531–536 (2012)
Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: Computer Vision and Pattern Recognition (CVPR 2005), pp. 886–893 (2005)
Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)
Cutler, R., Shekhar, C., Burns, B., Chellappa, R., Bolles, R., Davis, L.S.: Monitoring Human and Vehicle Activities Using Airborne Video. In: Proc. SPIE, vol. 3905, pp. 146–153. Int. Soc. Opt. Eng. (2000)
Fiore, L., Fehr, D., Bodor, R., Drenner, A., Somasundaram, G., Papanikolopoulos, N.: Multi-camera Human Activity Monitoring. Journal of Intelligent & Robotic Systems 52(1), 5–43 (2008)
Zouba, N., Boulay, B., Bremond, F., Thonnat, M.: Monitoring Activities of Daily Living (ADLs) of Elderly Based on 3D Key Human Postures. In: Caputo, B., Vincze, M. (eds.) ICVW 2008. LNCS, vol. 5329, pp. 37–50. Springer, Heidelberg (2008)
Ayers, D., Shah, M.: Monitoring Human Behavior from Video Taken in an Office Environment. Image and Vision Computing 19(12), 833–846 (2001)
Hsu, C., Lin, C.: A Comparison of Methods for Multi-class Support Vector Machines. IEEE Transactions on Neural Networks 13(2), 415–425 (2002)
Weston, J., Watkins, C.: Support Vector Machines for Multi-class Pattern Recognition. In: Proc. Seventh European Symposium on Artificial Neural Networks (ESANN 1999), pp. 219–224 (1999)
Kosov, S., Thormählen, T., Seidel, H.-P.: Accurate Real-Time Disparity Estimation with Variational Methods. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Kuno, Y., Wang, J., Wang, J.-X., Wang, J., Pajarola, R., Lindstrom, P., Hinkenjann, A., Encarnação, M.L., Silva, C.T., Coming, D. (eds.) ISVC 2009, Part I. LNCS, vol. 5875, pp. 796–807. Springer, Heidelberg (2009)
Phung, S., Bouzerdoum, A., Chai, D.: Skin Segmentation Using Color Pixel Classification: Analysis and Comparison. IEEE Trans. PAMI 27(1), 148–154 (2005)
Joachims, T.: Making Large-Scale SVM Learning Practical. In: Advances in Kernel Methods - Support Vector Learning, pp. 169–184. MIT Press (1999)
Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: From Data Mining to Knowledge Discovery: An Overview. In: Advances in Knowledge Discovery and Data Mining, pp. 1–34. AAAI/MIT Press, Menlo Park, Calif. (1996)
Shotton, J., Fitzgibbon, A.W., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A.: Real-Time Human Pose Recognition in Parts from Single Depth Images. In: 24th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2011), pp. 1297–1304 (2011)
Dargie, W., Poellabauer, C.: Fundamentals of Wireless Sensor Networks. John Wiley & Sons, Chichester (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sugaya, S., Takayama, D., Kouno, A., Suzuki, E. (2012). Intelligent Data Analysis by a Home-Use Human Monitoring Robot. In: Hollmén, J., Klawonn, F., Tucker, A. (eds) Advances in Intelligent Data Analysis XI. IDA 2012. Lecture Notes in Computer Science, vol 7619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34156-4_35
Download citation
DOI: https://doi.org/10.1007/978-3-642-34156-4_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34155-7
Online ISBN: 978-3-642-34156-4
eBook Packages: Computer ScienceComputer Science (R0)