Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Chromatic Number of the Convex Segment Disjointness Graph

  • Chapter
Computational Geometry (EGC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7579))

Included in the following conference series:

Abstract

Let P be a set of n points in general and convex position in the plane. Let D n be the graph whose vertex set is the set of all line segments with endpoints in P, where disjoint segments are adjacent. The chromatic number of this graph was first studied by Araujo et al. [CGTA, 2005]. The previous best bounds are \(\frac{3n}{4}\leq \chi(D_n) <n-\sqrt{\frac{n}{2}}\) (ignoring lower order terms). In this paper we improve the lower bound to \(\chi(D_n)\geq n-\sqrt{2n}\), achieving near-tight bounds on χ(D n ).

Dedicat al nostre amic i mestre Ferran Hurtado.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Araujo, G., Dumitrescu, A., Hurtado, F., Noy, M., Urrutia, J.: On the chromatic number of some geometric type Kneser graphs. Comput. Geom. Theory Appl. 32(1), 59–69 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cairns, G., Nikolayevsky, Y.: Bounds for generalized thrackles. Discrete Comput. Geom. 23(2), 191–206 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cairns, G., Nikolayevsky, Y.: Generalized thrackle drawings of non-bipartite graphs. Discrete Comput. Geom. 41(1), 119–134 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cairns, G., Nikolayevsky, Y.: Outerplanar thrackles. Graphs and Combinatorics 28(1), 85–96 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dujmović, V., Wood, D.R.: Thickness and antithickness (2010) (in preparation)

    Google Scholar 

  6. Fenchel, W., Sutherland, J.: Lösung der aufgabe 167. Jahresbericht der Deutschen Mathematiker-Vereinigung 45, 33–35 (1935)

    Google Scholar 

  7. Hopf, H., Pammwitz, E.: Aufgabe no. 167. Jahresbericht der Deutschen Mathematiker-Vereinigung 43 (1934)

    Google Scholar 

  8. Lovász, L., Pach, J., Szegedy, M.: On Conway’s thrackle conjecture. Discrete Comput. Geom. 18(4), 369–376 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Woodall, D.R.: Thrackles and deadlock. In: Combinatorial Mathematics and its Applications (Proc. Conf., Oxford, 1969), pp. 335–347. Academic Press, London (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fabila-Monroy, R., Wood, D.R. (2012). The Chromatic Number of the Convex Segment Disjointness Graph. In: Márquez, A., Ramos, P., Urrutia, J. (eds) Computational Geometry. EGC 2011. Lecture Notes in Computer Science, vol 7579. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34191-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34191-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34190-8

  • Online ISBN: 978-3-642-34191-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics