Abstract
Vast amounts of information is encoded in tables found in documents, on the Web, and in spreadsheets or databases. Integrating or searching over this information benefits from understanding its intended meaning and making it explicit in a semantic representation language like RDF. Most current approaches to generating Semantic Web representations from tables requires human input to create schemas and often results in graphs that do not follow best practices for linked data. Evidence for a table’s meaning can be found in its column headers, cell values, implicit relations between columns, caption and surrounding text but also requires general and domain-specific background knowledge. Approaches that work well for one domain, may not necessarily work well for others. We describe a domain independent framework for interpreting the intended meaning of tables and representing it as Linked Data. At the core of the framework are techniques grounded in graphical models and probabilistic reasoning to infer meaning associated with a table. Using background knowledge from resources in the Linked Open Data cloud, we jointly infer the semantics of column headers, table cell values (e.g., strings and numbers) and relations between columns and represent the inferred meaning as graph of RDF triples. A table’s meaning is thus captured by mapping columns to classes in an appropriate ontology, linking cell values to literal constants, implied measurements, or entities in the linked data cloud (existing or new) and discovering or and identifying relations between columns.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Berners-Lee, T.: Linked data (July 2006), http://www.w3.org/DesignIssues/LinkedData.html
Bizer, C.: The emerging web of linked data. IEEE Intelligent Systems 24(5), 87–92 (2009)
Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.: Dbpedia - a crystallization point for the web of data. Journal of Web Semantics 7(3), 154–165 (2009)
Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proc. ACM Int. Conf. on Management of Data, pp. 1247–1250. ACM (2008)
Cafarella, M.J., Halevy, A.Y., Wang, Z.D., Wu, E., Zhang, Y.: Webtables: exploring the power of tables on the web. PVLDB 1(1), 538–549 (2008)
Cohen, A., Adams, C., Davis, J., Yu, C., Yu, P., Meng, W., Duggan, L., McDonagh, M., Smalheiser, N.: Evidence-based medicine, the essential role of systematic reviews, and the need for automated text mining tools. In: Proc. 1st ACM Int. Health Informatics Symposium, pp. 376–380. ACM (2010)
Dataset 1425 - Census of Agriculture Race, Ethnicity and Gender Profile Data (2009), http://explore.data.gov/Agriculture/Census-of-Agriculture-Race-Ethnicity-and-Gender-Pr/yd4n-fk45
Ding, L., DiFranzo, D., Graves, A., Michaelis, J.R., Li, X., McGuinness, D.L., Hendler, J.A.: Twc data-gov corpus: incrementally generating linked government data from data.gov. In: Proc 19th Int. Conf. on the World Wide Web, pp. 1383–1386. ACM, New York (2010)
Embley, D.W., Lopresti, D.P., Nagy, G.: Notes on Contemporary Table Recognition. In: Bunke, H., Spitz, A.L. (eds.) DAS 2006. LNCS, vol. 3872, pp. 164–175. Springer, Heidelberg (2006)
Han, L., Finin, T., McNamee, P., Joshi, A., Yesha, Y.: Improving word similarity by augmenting pmi with estimates of word polysemy. IEEE Transactions on Knowledge and Data Engineering (2012)
Han, L., Finin, T., Parr, C., Sachs, J., Joshi, A.: RDF123: From Spreadsheets to RDF. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 451–466. Springer, Heidelberg (2008)
Hurst, M.: Towards a theory of tables. IJDAR 8(2-3), 123–131 (2006)
Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press (2009)
Langegger, A., Wöß, W.: XLWrap – Querying and Integrating Arbitrary Spreadsheets with SPARQL. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 359–374. Springer, Heidelberg (2009)
Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Tech. Rep. 8, Soviet Physics Doklady (1966)
Limaye, G., Sarawagi, S., Chakrabarti, S.: Annotating and searching web tables using entities, types and relationships. In: Proc. 36th Int. Conf. on Very Large Databases (2010)
Miller, G.A.: Wordnet: a lexical database for english. CACM 38, 39–41 (1995)
Mulwad, V.: T2LD - An automatic framework for extracting, interpreting and representing tables as Linked Data. Master’s thesis, U. of Maryalnd, Baltimore County (August 2010)
Mulwad, V., Finin, T., Syed, Z., Joshi, A.: Using linked data to interpret tables. In: Proc. 1st Int. Workshop on Consuming Linked Data, Shanghai (2010)
Polfliet, S., Ichise, R.: Automated mapping generation for converting databases into linked data. In: Proc. 9th Int. Semantic Web Conf. (November 2010)
Resnik, P.: Semantic similarity in a taxonomy: An information-based measure and its application to problems of ambiguity in natural language. Journal of Artificial Intelligence Research 11(1), 95–130 (1999)
Sackett, D., Rosenberg, W., Gray, J., Haynes, R., Richardson, W.: Evidence based medicine: what it is and what it isn’t. BMJ 312(7023), 71 (1996)
Sahoo, S.S., Halb, W., Hellmann, S., Idehen, K., Thibodeau Jr., T., Auer, S., Sequeda, J., Ezzat, A.: A survey of current approaches for mapping of relational databases to rdf. Tech. rep., W3C (2009)
Salton, G., Mcgill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill, Inc., New York (1986)
Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: A Core of Semantic Knowledge. In: 16th Int. World Wide Web Conf. ACM Press, New York (2007)
Syed, Z., Finin, T.: Creating and Exploiting a Hybrid Knowledge Base for Linked Data. In: Filipe, J., Fred, A., Sharp, B. (eds.) ICAART 2010. CCIS, vol. 129, pp. 3–21. Springer, Heidelberg (2011)
Syed, Z., Finin, T., Mulwad, V., Joshi, A.: Exploiting a Web of Semantic Data for Interpreting Tables. In: Proc. 2nd Web Science Conf. (April 2010)
Vavliakis, K.N., Grollios, T.K., Mitkas, P.A.: Rdote - transforming relational databases into semantic web data. In: Proc. 9th Int. Semantic Web Conf. (November 2010)
Venetis, P., Halevy, A., Madhavan, J., Pasca, M., Shen, W., Wu, F., Miao, G., Wu, C.: Recovering semantics of tables on the web. In: Proc. 37th Int. Conf. on Very Large Databases (2011)
Wang, J., Shao, B., Wang, H., Zhu, K.Q.: Understanding tables on the web. Tech. rep., Microsoft Research Asia (2011)
Wu, W., Li, H., Wang, H., Zhu, K.: Towards a probabilistic taxonomy of many concepts. Tech. rep., Microsoft Research Asia (2011)
Zagari, R., Bianchi-Porro, G., Fiocca, R., Gasbarrini, G., Roda, E., Bazzoli, F.: Comparison of 1 and 2 weeks of omeprazole, amoxicillin and clarithromycin treatment for helicobacter pylori eradication: the hyper study. Gut 56(4), 475 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Mulwad, V., Finin, T., Joshi, A. (2012). A Domain Independent Framework for Extracting Linked Semantic Data from Tables. In: Ceri, S., Brambilla, M. (eds) Search Computing. Lecture Notes in Computer Science, vol 7538. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34213-4_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-34213-4_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34212-7
Online ISBN: 978-3-642-34213-4
eBook Packages: Computer ScienceComputer Science (R0)