Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Domain Independent Framework for Extracting Linked Semantic Data from Tables

  • Chapter
Search Computing

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7538))

Abstract

Vast amounts of information is encoded in tables found in documents, on the Web, and in spreadsheets or databases. Integrating or searching over this information benefits from understanding its intended meaning and making it explicit in a semantic representation language like RDF. Most current approaches to generating Semantic Web representations from tables requires human input to create schemas and often results in graphs that do not follow best practices for linked data. Evidence for a table’s meaning can be found in its column headers, cell values, implicit relations between columns, caption and surrounding text but also requires general and domain-specific background knowledge. Approaches that work well for one domain, may not necessarily work well for others. We describe a domain independent framework for interpreting the intended meaning of tables and representing it as Linked Data. At the core of the framework are techniques grounded in graphical models and probabilistic reasoning to infer meaning associated with a table. Using background knowledge from resources in the Linked Open Data cloud, we jointly infer the semantics of column headers, table cell values (e.g., strings and numbers) and relations between columns and represent the inferred meaning as graph of RDF triples. A table’s meaning is thus captured by mapping columns to classes in an appropriate ontology, linking cell values to literal constants, implied measurements, or entities in the linked data cloud (existing or new) and discovering or and identifying relations between columns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berners-Lee, T.: Linked data (July 2006), http://www.w3.org/DesignIssues/LinkedData.html

  2. Bizer, C.: The emerging web of linked data. IEEE Intelligent Systems 24(5), 87–92 (2009)

    Article  Google Scholar 

  3. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.: Dbpedia - a crystallization point for the web of data. Journal of Web Semantics 7(3), 154–165 (2009)

    Article  Google Scholar 

  4. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proc. ACM Int. Conf. on Management of Data, pp. 1247–1250. ACM (2008)

    Google Scholar 

  5. Cafarella, M.J., Halevy, A.Y., Wang, Z.D., Wu, E., Zhang, Y.: Webtables: exploring the power of tables on the web. PVLDB 1(1), 538–549 (2008)

    Google Scholar 

  6. Cohen, A., Adams, C., Davis, J., Yu, C., Yu, P., Meng, W., Duggan, L., McDonagh, M., Smalheiser, N.: Evidence-based medicine, the essential role of systematic reviews, and the need for automated text mining tools. In: Proc. 1st ACM Int. Health Informatics Symposium, pp. 376–380. ACM (2010)

    Google Scholar 

  7. Dataset 1425 - Census of Agriculture Race, Ethnicity and Gender Profile Data (2009), http://explore.data.gov/Agriculture/Census-of-Agriculture-Race-Ethnicity-and-Gender-Pr/yd4n-fk45

  8. Ding, L., DiFranzo, D., Graves, A., Michaelis, J.R., Li, X., McGuinness, D.L., Hendler, J.A.: Twc data-gov corpus: incrementally generating linked government data from data.gov. In: Proc 19th Int. Conf. on the World Wide Web, pp. 1383–1386. ACM, New York (2010)

    Chapter  Google Scholar 

  9. Embley, D.W., Lopresti, D.P., Nagy, G.: Notes on Contemporary Table Recognition. In: Bunke, H., Spitz, A.L. (eds.) DAS 2006. LNCS, vol. 3872, pp. 164–175. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Han, L., Finin, T., McNamee, P., Joshi, A., Yesha, Y.: Improving word similarity by augmenting pmi with estimates of word polysemy. IEEE Transactions on Knowledge and Data Engineering (2012)

    Google Scholar 

  11. Han, L., Finin, T., Parr, C., Sachs, J., Joshi, A.: RDF123: From Spreadsheets to RDF. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 451–466. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Hurst, M.: Towards a theory of tables. IJDAR 8(2-3), 123–131 (2006)

    Article  Google Scholar 

  13. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press (2009)

    Google Scholar 

  14. Langegger, A., Wöß, W.: XLWrap – Querying and Integrating Arbitrary Spreadsheets with SPARQL. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 359–374. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Tech. Rep. 8, Soviet Physics Doklady (1966)

    Google Scholar 

  16. Limaye, G., Sarawagi, S., Chakrabarti, S.: Annotating and searching web tables using entities, types and relationships. In: Proc. 36th Int. Conf. on Very Large Databases (2010)

    Google Scholar 

  17. Miller, G.A.: Wordnet: a lexical database for english. CACM 38, 39–41 (1995)

    Google Scholar 

  18. Mulwad, V.: T2LD - An automatic framework for extracting, interpreting and representing tables as Linked Data. Master’s thesis, U. of Maryalnd, Baltimore County (August 2010)

    Google Scholar 

  19. Mulwad, V., Finin, T., Syed, Z., Joshi, A.: Using linked data to interpret tables. In: Proc. 1st Int. Workshop on Consuming Linked Data, Shanghai (2010)

    Google Scholar 

  20. Polfliet, S., Ichise, R.: Automated mapping generation for converting databases into linked data. In: Proc. 9th Int. Semantic Web Conf. (November 2010)

    Google Scholar 

  21. Resnik, P.: Semantic similarity in a taxonomy: An information-based measure and its application to problems of ambiguity in natural language. Journal of Artificial Intelligence Research 11(1), 95–130 (1999)

    MathSciNet  MATH  Google Scholar 

  22. Sackett, D., Rosenberg, W., Gray, J., Haynes, R., Richardson, W.: Evidence based medicine: what it is and what it isn’t. BMJ 312(7023), 71 (1996)

    Article  Google Scholar 

  23. Sahoo, S.S., Halb, W., Hellmann, S., Idehen, K., Thibodeau Jr., T., Auer, S., Sequeda, J., Ezzat, A.: A survey of current approaches for mapping of relational databases to rdf. Tech. rep., W3C (2009)

    Google Scholar 

  24. Salton, G., Mcgill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill, Inc., New York (1986)

    Google Scholar 

  25. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: A Core of Semantic Knowledge. In: 16th Int. World Wide Web Conf. ACM Press, New York (2007)

    Google Scholar 

  26. Syed, Z., Finin, T.: Creating and Exploiting a Hybrid Knowledge Base for Linked Data. In: Filipe, J., Fred, A., Sharp, B. (eds.) ICAART 2010. CCIS, vol. 129, pp. 3–21. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  27. Syed, Z., Finin, T., Mulwad, V., Joshi, A.: Exploiting a Web of Semantic Data for Interpreting Tables. In: Proc. 2nd Web Science Conf. (April 2010)

    Google Scholar 

  28. Vavliakis, K.N., Grollios, T.K., Mitkas, P.A.: Rdote - transforming relational databases into semantic web data. In: Proc. 9th Int. Semantic Web Conf. (November 2010)

    Google Scholar 

  29. Venetis, P., Halevy, A., Madhavan, J., Pasca, M., Shen, W., Wu, F., Miao, G., Wu, C.: Recovering semantics of tables on the web. In: Proc. 37th Int. Conf. on Very Large Databases (2011)

    Google Scholar 

  30. Wang, J., Shao, B., Wang, H., Zhu, K.Q.: Understanding tables on the web. Tech. rep., Microsoft Research Asia (2011)

    Google Scholar 

  31. Wu, W., Li, H., Wang, H., Zhu, K.: Towards a probabilistic taxonomy of many concepts. Tech. rep., Microsoft Research Asia (2011)

    Google Scholar 

  32. Zagari, R., Bianchi-Porro, G., Fiocca, R., Gasbarrini, G., Roda, E., Bazzoli, F.: Comparison of 1 and 2 weeks of omeprazole, amoxicillin and clarithromycin treatment for helicobacter pylori eradication: the hyper study. Gut 56(4), 475 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mulwad, V., Finin, T., Joshi, A. (2012). A Domain Independent Framework for Extracting Linked Semantic Data from Tables. In: Ceri, S., Brambilla, M. (eds) Search Computing. Lecture Notes in Computer Science, vol 7538. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34213-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34213-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34212-7

  • Online ISBN: 978-3-642-34213-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics