Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Fluid Motion Vector Calculation Using Continuity Equation Optimizing

  • Conference paper
AsiaSim 2012 (AsiaSim 2012)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 323))

Included in the following conference series:

  • 1887 Accesses

Abstract

It is very important to calculate fluid motion vector for natural landscape modeling of virtual reality interaction. This paper presents a new method of landscape fluid motion vector calculating. First, we use Plessy operator to extract feature points from two images and to calculate the match points using the area correlation matching method. Then the linear interpolation method with the shortest distance is used to interpolate the calculated motion vector to obtain dense fluid motion vector result. At last, we use the fluid continuity equation to optimize the dense fluid motion vector field to obtain dense and more accurate fluid motion vector calculation results. Further experimental results show that this method has the characteristic of simple and accurate. It is a valid method of fluid motion calculating and be used in the application of fluid simulation and virtual reality study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jin, H., Gao, W.: Movement Analysis and Application of Facial Expression Based on the Characteristic Flow. Journal of Software 14, 2098–2105 (2003)

    MATH  MathSciNet  Google Scholar 

  2. Horn, B.K.P., Schunck, B.G.: Determining Optical Flow. Artificial Intelligence 17, 185–203 (1981)

    Article  Google Scholar 

  3. Lucas, B.D., Kanade, T.: An Iterative Image Registration Technique with an Application to Stereo Vision. In: 1981 DARPA Imaging Understanding Workshop, pp. 121–130 (1981)

    Google Scholar 

  4. Corpetti, T., Memin, E., Perez, P.: Dense Estimation of Fluid Flows. Pattern Analysis and Machine Intelligence 24, 365–380 (2002)

    Article  Google Scholar 

  5. Ghosh, A., Adrian, G.B.: Anisotropic Fluid Solver for Robust Optical Flow Smoothing. In: 10th Workshop Image Analysis for Multimedia Interactive Services, pp. 117–220. IEEE Press, London (2009)

    Google Scholar 

  6. Ghosh, A., Adrian, G.B.: Robust Processing of Optical Flow of Fluids. IEEE Transactions on Image Processing 19, 2332–2344 (2010)

    Article  MathSciNet  Google Scholar 

  7. Zhang, Z.W., Liu, G.Z., Li, H.L., Li, Y.L.: Using Energy Flow Information for Video Segmentation. Journal of Electronics 33, 177–180 (2005)

    Google Scholar 

  8. Li, M.G., Du, H.: A New Method Based on Cell Segmentation Theory for Particle Image Velcimetry. Journal of Electronics 36, 767–771 (2008)

    Google Scholar 

  9. Lu, Z.Q., Liao, Q.M., Pei, J.H.: A PIV Approach Based on Nonlinear Filtering. Journal of Electronics and Information Technology 32, 400–404 (2010)

    Article  Google Scholar 

  10. Zhang, Z.Y., Deriche, R., Faugeras, O., Luong, Q.T.: A Robust Technique for Matching Two Uncalibrated Images Through the Recovery of the Unknown Epipolar Geometry. Artificial Intelligence 78, 87–119 (1995)

    Article  Google Scholar 

  11. Li, F., Xu, L.W., Guyenne, P., Yu, J.Y.: Recovering Fluid-type Motions Using Navier-Stokes Potential Flow. In: Computer Vision and Pattern Recognition, pp. 2448–2455. IEEE Press, San Francisco (2010)

    Google Scholar 

  12. Amiaz, T., Fazekas, S., Chetverikov, D., Kiryati, N.: Detecting Regions of Dynamic Texture. In: 1st International Conference on Scale Space and Variational Methods in Computer Vision, pp. 848–859. IEEE Press, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Peteri, R., Huskies, M., Fazekas, S.: DynTex: A Comprehensive Database of Dynamic Textures, http://www.cwi.nl/projects/dyntex/

  14. Michael, J.B.: Requently Asked Questions, http://www.cs.brown.edu/people/black/

  15. Liu, C.: Beyond Pixels: Exploring New Representations and Applications for Motion Analysis. Doctoral Thesis, Massachusetts Institute of Technology (2009)

    Google Scholar 

  16. Nilanjan, R.: Computation of Fluid and Particle Motion from a Time-Sequenced Image Pair: A Global Outlier Identification Approach. IEEE Transactions on Image Processing 10, 2925–2936 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, M., Quan, H. (2012). Fluid Motion Vector Calculation Using Continuity Equation Optimizing. In: Xiao, T., Zhang, L., Fei, M. (eds) AsiaSim 2012. AsiaSim 2012. Communications in Computer and Information Science, vol 323. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34384-1_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34384-1_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34383-4

  • Online ISBN: 978-3-642-34384-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics