Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Comparison of Operator Utility Measures for On-Line Operator Selection in Local Search

  • Conference paper
Learning and Intelligent Optimization (LION 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7219))

Included in the following conference series:

Abstract

This paper investigates the adaptive selection of operators in the context of Local Search. The utility of each operator is computed from the solution quality and distance of the candidate solution from the search trajectory. A number of utility measures based on the Pareto dominance relationship and the relative distances between the operators are proposed and evaluated on QAP instances using an implied or static target balance between exploitation and exploration. A refined algorithm with an adaptive target balance is then examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Birattari, M.: The Problem of Tuning Metaheuristics as seen from a machine learning perspective. Ph.D. thesis, Université Libre de Bruxelles, Brussels, Belgium (December 2004)

    Google Scholar 

  2. Burkard, R.E., Karisch, S.E., Rendl, F.: QAPLIB – a quadratic assignment problem library. Journal of Global Optimization 10, 391–403 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyper-heuristics: An emerging direction in modern search technology. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 57, pp. 457–474. Springer, New York (2003)

    Google Scholar 

  4. Fialho, Á.: Adaptive Operator Selection for Optimization. Ph.D. thesis, Université Paris-Sud 11, Orsay, France (December 2010)

    Google Scholar 

  5. Hamadi, Y., Monfroy, E., Saubion, F.: What is autonomous search? In: van Hentenryck, P., Milano, M. (eds.) Hybrid Optimization. Springer Optimization and Its Applications, vol. 45, pp. 357–391. Springer, New York (2011)

    Chapter  Google Scholar 

  6. Lobo, F.G., Lima, C.F., Michalewicz, Z. (eds.): Parameter Setting in Evolutionary Algorithms. SCI, vol. 54. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  7. Maturana, J., Lardeux, F., Saubion, F.: Autonomous operator management for evolutionary algorithms. J. Heuristics 16(6), 881–909 (2010)

    Article  MATH  Google Scholar 

  8. Maturana, J., Saubion, F.: On the Design of Adaptive Control Strategies for Evolutionary Algorithms. In: Monmarché, N., Talbi, E.-G., Collet, P., Schoenauer, M., Lutton, E. (eds.) EA 2007. LNCS, vol. 4926, pp. 303–315. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Taillard, É.D.: Robust taboo search for the quadratic assignment problem. Parallel Computing 17(4-5), 443–455 (1991)

    Article  MathSciNet  Google Scholar 

  10. Veerapen, N., Saubion, F.: Pareto Autonomous Local Search. In: Coello, C.A.C. (ed.) LION 5. LNCS, vol. 6683, pp. 392–406. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Veerapen, N., Maturana, J., Saubion, F. (2012). A Comparison of Operator Utility Measures for On-Line Operator Selection in Local Search. In: Hamadi, Y., Schoenauer, M. (eds) Learning and Intelligent Optimization. LION 2012. Lecture Notes in Computer Science, vol 7219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34413-8_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34413-8_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34412-1

  • Online ISBN: 978-3-642-34413-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics