Abstract
Functional Magnetic Resonance Imaging (fMRI) is a non-inasive neuro-imaging method that is widely used in cognitive neuroscience. It relies on the measurement of changes in the blood oxygenation level resulting from neural activity. The technique is widely used in cognitive neuroscience. fMRI is known to be contaminated by artifacts. Artifacts are known to have fat tails and are often skewed therefore modeling the error using a Gaussian distribution is a not enough. In this paper, we introduce RAFNI, an extention of AFNI, which is an fMRI open source software for the Analysis of Functional NeuroImages. We are modeling the error introduced by artifacts using α-stable distribution. We demonstrate the applicability and efficiency of stable distributions on real fMRI. We show that the α-stable estimator gives better results than the OLS-based estimators.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Heeger, D., Rees, D.: What does fMRI tell us about neural activity? Nat. Rev. Neurosc. 3, 142–151 (2002)
Logothetis, N.: The neural basis of the BOLD fMRI signal. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 357, 1003–1037 (2002)
EEG/fMRI artcile
Ashby, F.G.: Statistical Analysis of fMRI Data. The MIT Press, London (2011)
Friston, K.J., Jezzard, P.J., Turner, R.: Analysis of functional MRI time-series. Human Brain Mapping 1, 153–171 (1994)
Woolrich, M.W., Jbabdi, S., Patenaude, B., Chappell, M., Makni, S., Behrens, T., Beckmann, C., Jenkinson, M., Smith, S.M.: Bayesian analysis of neuroimaging data in FSL. NeuroImage 45, 173–186 (2009)
Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E.J., Johansen-Berg, H., Bannister, P.R., Luca, M.D., Drobnjak, I., Flitney, D.E., Niazy, R., Saunders, J., Vickers, J., Zhang, Y., Stefano, N.D., Brady, J.M., Matthews, P.M.: Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23, 208–219 (2004)
Goebel, R., Esposito, F., Formisano, E.: Analysis of functional image analysis contest (FIAC) data with Brainvoyager QX: From single-subject to cortically aligned group general linear model analysis and self-organizing group independent component analysis. Human Brain Mapping 27, 392–401 (2006)
Cox, R.W.: AFNI: Software for Analysis and visualization of Functional Magnetic Resonance Neuroimages. Comp. and Biomed. Res. 29, 162–173 (1996)
Mandelbrot, B.: Sur certain prix speculatifs: faits empiriques et modele basee sur les processes stables additifs de Paul Levy. Comptes Rendus 254, 3968–3970 (1962)
Mandelbrot, B., Hudson, L.R.: The (mis) Behaviour of Markets: A Fractal View of Risk, Ruin and Reward. Basic Books, New York (2004)
Zolotarev, V.M.: One-Dimensional Stable Distributions. American Mathematical Society (1986)
Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes. Chapman & Hall (1994)
Weron, R.: Levy-stable distributions revisited: Tail index 2 does not exclude the Levy-stable regime. International Journal of Modern Physics C12, 209–223 (2001)
Uchaikin, V.V., Zolotarev, V.M.: Chance and Stability. VSP, Netherlands, Utrecht (1999)
Rachev, S.T., Mittnik, S.: Stable Paretian Models in Finance. Series in Financial Economics. John Wiley & Sons (2000)
Rimmer, R.H., Nolan, J.P.: Stable Distributions in Mathematica. Mathematica J. 9, 776–789 (2005)
Wuertz, D.: Rmetrics: An Environment and Software Collection for Teaching Financial Engineering and Computational Finance. R package fCalendar (2005), http://www.Rmetrics.org/
Nolan, J.P.: Stable Distributions. Models for Heavy Tailed Data. Birkhauser, Boston (2005)
McCulloch, J.H.: Simple Consistent Estimators of Stable Distribution Parameters. Communications in Statistics - Simulations 15, 1109–1136 (1986)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bensmail, H., Anjum, S., Bouhali, O., El Anbari, M. (2012). RAFNI: Robust Analysis of Functional NeuroImages with Non–normal α-Stable Error. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds) Neural Information Processing. ICONIP 2012. Lecture Notes in Computer Science, vol 7663. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34475-6_75
Download citation
DOI: https://doi.org/10.1007/978-3-642-34475-6_75
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34474-9
Online ISBN: 978-3-642-34475-6
eBook Packages: Computer ScienceComputer Science (R0)