Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Towards IMACA: Intelligent Multimodal Affective Conversational Agent

  • Conference paper
Neural Information Processing (ICONIP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7663))

Included in the following conference series:

  • 3271 Accesses

Abstract

A key aspect when trying to achieve natural interaction in machines is multimodality. Besides verbal communication, in fact, humans interact also through many other channels, e.g., facial expressions, gestures, eye contact, posture, and voice tone. Such channels convey not only semantics, but also emotional cues that are essential for interpreting the message transmitted. The importance of the affective information and the capability of properly managing it, in fact, has been more and more understood as fundamental for the development of a new generation of emotion-aware applications for several scenarios like e-learning, e-health, and human-computer interaction. To this end, this work investigates the adoption of different paradigms in the fields of text, vocal, and video analysis, in order to lay the basis for the development of an intelligent multimodal affective conversational agent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cifani, S., Abel, A., Hussain, A., Squartini, S., Piazza, F.: An Investigation into Audiovisual Speech Correlation in Reverberant Noisy Environments. In: Esposito, A., Vích, R. (eds.) Cross-Modal Analysis of Speech, Gestures, Gaze and Facial Expressions. LNCS, vol. 5641, pp. 331–343. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Kapoor, A., Burleson, W., Picard, R.: Automatic prediction of frustration. International Journal of Human-Computer Studies 65, 724–736 (2007)

    Article  Google Scholar 

  3. Shan, C., Gong, S., McOwan, P.: Beyond facial expressions: Learning human emotion from body gestures. In: BMVC, Warwick (2007)

    Google Scholar 

  4. Pun, T., Alecu, T., Chanel, G., Kronegg, J., Voloshynovskiy, S.: Brain-computer interaction research at the computer vision and multimedia laboratory. IEEE Trans. on Neural Systems and Rehabilitation Engineering 14(2), 210–213 (2006)

    Article  Google Scholar 

  5. Kuncheva, L.: Combining Pattern Classifiers: Methods and Algorithms. Wiley & Sons (2004)

    Google Scholar 

  6. Zeng, Z., Tu, J., Liu, M., Huang, T., Pianfetti, B., Roth, D., Levinson, S.: Audio-visual affect recognition. IEEE Trans. Multimedia 9(2), 424–428 (2007)

    Article  Google Scholar 

  7. Gunes, H., Piccardi, M.: Bi-modal emotion recognition from expressive face and body gestures. Network and Computer Applications 30(4), 1334–1345 (2007)

    Article  Google Scholar 

  8. Pal, P., Iyer, A., Yantorno, R.: Emotion detection from infant facial expressions and cries. In: International Conference on Acoustics, Speech and Signal Processing, Dallas (2006)

    Google Scholar 

  9. Cambria, E., Hussain, A.: Sentic Computing: Techniques, Tools, and Applications. Springer, Dordrecht (2012)

    Google Scholar 

  10. Cambria, E., Benson, T., Eckl, C., Hussain, A.: Sentic PROMs: Application of sentic computing to the development of a novel unified framework for measuring health-care quality. Expert Systems with Applications 39(12), 10533–10543 (2012)

    Article  Google Scholar 

  11. Cambria, E., Song, Y., Wang, H., Hussain, A.: Isanette: A common and common sense knowledge base for opinion mining. In: ICDM, Vancouver, pp. 315–322 (2011)

    Google Scholar 

  12. Cambria, E., Olsher, D., Kwok, K.: Sentic activation: A two-level affective common sense reasoning framework. In: AAAI, Toronto, pp. 186–192 (2012)

    Google Scholar 

  13. Cambria, E., Livingstone, A., Hussain, A.: The hourglass of emotions. In: Esposito, A., et al. (eds.) Cognitive Behavioural Systems. LNCS, vol. 7403, pp. 144–157. Springer, Heidelberg (2012)

    Google Scholar 

  14. Alm, C., Roth, D., Sproat, R.: Emotions from text: Machine learning for text-based emotion prediction. In: HLT/EMNLP, pp. 347–354 (2005)

    Google Scholar 

  15. Lin, W., Wilson, T., Wiebe, J., Hauptmann, A.: Which side are you on? identifying perspectives at the document and sentence levels. In: Conference on Natural Language Learning, pp. 109–116 (2006)

    Google Scholar 

  16. Danisman, T., Alpkocak, A.: Feeler: Emotion classification of text using vector space model. In: AISB (2008)

    Google Scholar 

  17. D’Mello, S., Dowell, N., Graesser, A.: Cohesion relationships in tutorial dialogue as predictors of affective states. In: Conf. Artificial Intelligence in Education, pp. 9–16 (2009)

    Google Scholar 

  18. Cambria, E., Mazzocco, T., Hussain, A., Eckl, C.: Sentic medoids: Organizing affective common sense knowledge in a multi-dimensional vector space. In: Liu, D., Zhang, H., Polycarpou, M., Alippi, C., He, H. (eds.) ISNN 2011, Part III. LNCS, vol. 6677, pp. 601–610. Springer, Heidelberg (2011)

    Google Scholar 

  19. Christian, J., Deeming, A.: Affective human-robotic interaction. In: Affect and Emotion in Human-Computer Interaction: From Theory to Applications (2008)

    Google Scholar 

  20. Petrushin, V.: Emotion in speech: Recognition and application to call centers. In: Conference on Artificial Neural Networks in Engineering, p. 710 (1999)

    Google Scholar 

  21. Navas, E., Hernez, L.: An objective and subjective study of the role of semantics and prosodic features in building corpora for emotional TTS. IEEE Transactions on Audio, Speech, and Language Processing 14, 1117–1127 (2006)

    Article  Google Scholar 

  22. Atassi, H., Esposito, A.: A speaker independent approach to the classification of emotional vocal expressions, pp. 147-152 (2008)

    Google Scholar 

  23. Burkhardt, F., Paeschke, A., Rolfes, M., Sendlmeier, W., Weiss, B.: A database of german emotional speech. In: Interspeech, pp. 1517–1520 (2005)

    Google Scholar 

  24. Pudil, P., Ferri, F., Novovicova, J., Kittler, J.: Floating search method for feature selection with non monotonic criterion functions. Pattern Recognition 2, 279–283 (1994)

    Google Scholar 

  25. Ekman, P., Dalgleish, T., Power, M.: Handbook of Cognition and Emotion. Wiley, Chichester (1999)

    Google Scholar 

  26. Abel, A., Hussain, A., Nguyen, Q.-D., Ringeval, F., Chetouani, M., Milgram, M.: Maximising Audiovisual Correlation with Automatic Lip Tracking and Vowel Based Segmentation. In: Fierrez, J., Ortega-Garcia, J., Esposito, A., Drygajlo, A., Faundez-Zanuy, M. (eds.) BioID MultiComm 2009. LNCS, vol. 5707, pp. 65–72. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  27. Whissell, C.: The dictionary of affect in language. Emotion: Theory, Research, and Experience 4, 113–131 (1989)

    Google Scholar 

  28. Grassi, M., Cambria, E., Hussain, A., Piazza, F.: Sentic web: A new paradigm for managing social media affective information. Cognitive Computation 3(3), 480–489 (2011)

    Article  Google Scholar 

  29. Grassi, M.: Developing HEO Human Emotions Ontology. In: Fierrez, J., Ortega-Garcia, J., Esposito, A., Drygajlo, A., Faundez-Zanuy, M. (eds.) BioID MultiComm 2009. LNCS, vol. 5707, pp. 244–251. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hussain, A., Cambria, E., Mazzocco, T., Grassi, M., Wang, QF., Durrani, T. (2012). Towards IMACA: Intelligent Multimodal Affective Conversational Agent. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds) Neural Information Processing. ICONIP 2012. Lecture Notes in Computer Science, vol 7663. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34475-6_79

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34475-6_79

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34474-9

  • Online ISBN: 978-3-642-34475-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics