Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Parameterized Domination in Circle Graphs

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2012)

Abstract

A circle graph is the intersection graph of a set of chords in a circle. Keil [Discrete Applied Mathematics, 42(1):51-63, 1993] proved that Dominating Set, Connected Dominating Set, and Total Dominating Set are NP-complete in circle graphs. To the best of our knowledge, nothing was known about the parameterized complexity of these problems in circle graphs. In this paper we prove the following results, which contribute in this direction:

  • Dominating Set, Independent Dominating Set, Connected Dominating Set, Total Dominating Set, and Acyclic Dominating Set are W[1]-hard in circle graphs, parameterized by the size of the solution.

  • Whereas both Connected Dominating Set and Acyclic Dominating Set are W[1]-hard in circle graphs, it turns out that Connected Acyclic Dominating Set is polynomial-time solvable in circle graphs.

  • If T is a given tree, deciding whether a circle graph has a dominating set isomorphic to T is NP-complete when T is in the input, and FPT when parameterized by |V(T)|. We prove that the FPT algorithm is subexponential.

The third author was partially supported by EPSRC Grant EP/G043434/1. The other authors were partially supported by AGAPE (ANR-09-BLAN-0159) and GRATOS (ANR-09-JCJC-0041) projects (France).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley (1974)

    Google Scholar 

  2. Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed Parameter Algorithms for Dominated Set and Related Problems on Planar Graphs. Algorithmica 33(4), 461–493 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alon, N., Gutner, S.: Kernels for the Dominating Set Problem on Graphs with an Excluded Minor. Electronic Colloquium on Computational Complexity (ECCC) 15(066) (2008)

    Google Scholar 

  4. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. Journal of Computer and System Sciences 75(8), 423–434 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bousquet, N., Gonçalves, D., Mertzios, G.B., Paul, C., Sau, I., Thomassé, S.: Parameterized Domination in Circle Graphs. Manuscript available at http://arxiv.org/abs/1205.3728 (2012)

  6. Courcelle, B.: The Monadic Second-Order Logic of Graphs: Definable Sets of Finite Graphs. In: van Leeuwen, J. (ed.) WG 1988. LNCS, vol. 344, pp. 30–53. Springer, Heidelberg (1989)

    Chapter  Google Scholar 

  7. Cygan, M., Philip, G., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Dominating set is fixed parameter tractable in claw-free graphs. Theoretical Computer Science 412(50), 6982–7000 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Damaschke, P.: The Hamiltonian Circuit Problem for Circle Graphs is NP-Complete. Information Processing Letters 32(1), 1–2 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Damian-Iordache, M., Pemmaraju, S.V.: Hardness of Approximating Independent Domination in Circle Graphs. In: Aggarwal, A.K., Pandu Rangan, C. (eds.) ISAAC 1999. LNCS, vol. 1741, pp. 56–69. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  10. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999)

    Book  Google Scholar 

  11. Elmallah, E.S., Stewart, L.K.: Independence and domination in polygon graphs. Discrete Applied Mathematics 44(1-3), 65–77 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Even, S., Itai, A.: Queues, stacks and graphs. In: Press, A. (ed.) Theory of Machines and Computations, pp. 71–86 (1971)

    Google Scholar 

  13. Fellows, M.R., Hermelin, D., Rosamond, F.A., Vialette, S.: On the parameterized complexity of multiple-interval graph problems. Theoretical Computer Science 410(1), 53–61 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)

    Google Scholar 

  15. Fomin, F., Gaspers, S., Golovach, P., Suchan, K., Szeider, S., Jan Van Leeuwen, E., Vatshelle, M., Villanger, Y.: k-Gap Interval Graphs. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 350–361. Springer, Heidelberg (2012), http://arxiv.org/abs/1112.3244

    Chapter  Google Scholar 

  16. Garey, M., Johnson, D.: Computers and Intractability. W.H. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  17. Gavril, F.: Algorithms for a maximum clique and a maximum independent set of a circle graph. Networks 3, 261–273 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gavril, F.: Minimum weight feedback vertex sets in circle graphs. Information Processing Letters 107(1), 1–6 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gioan, E., Paul, C., Tedder, M., Corneil, D.: Circle Graph Recognition in Time O(n + mα(n + m). Manuscript available at http://arxiv.org/abs/1104.3284 (2011)

  20. Hedetniemi, S.M., Hedetniemi, S.T., Rall, D.F.: Acyclic domination. Discrete Mathematics 222(1-3), 151–165 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jiang, M., Zhang, Y.: Parameterized Complexity in Multiple-Interval Graphs: Domination. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 27–40. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  22. Keil, J.M.: The complexity of domination problems in circle graphs. Discrete Applied Mathematics 42(1), 51–63 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Keil, J.M., Stewart, L.: Approximating the minimum clique cover and other hard problems in subtree filament graphs. Discrete Applied Mathematics 154(14), 1983–1995 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kloks, T.: Treewidth of circle graphs. International Journal of Foundations of Computer Science 7(2), 111–120 (1996)

    Article  MATH  Google Scholar 

  25. Marx, D.: Parameterized Complexity of Independence and Domination on Geometric Graphs. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 154–165. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  26. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press (2006)

    Google Scholar 

  27. Sherwani, N.A.: Algorithms for VLSI Physical Design Automation. Kluwer Academic Press (1992)

    Google Scholar 

  28. Spinrad, J.: Recognition of circle graphs. Journal of Algorithms 16(2), 264–282 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Unger, W.: On the k-Colouring of Circle-Graphs. In: Cori, R., Wirsing, M. (eds.) STACS 1988. LNCS, vol. 294, pp. 61–72. Springer, Heidelberg (1988)

    Chapter  Google Scholar 

  30. Unger, W.: The Complexity of Colouring Circle Graphs (Extended Abstract). In: Finkel, A., Jantzen, M. (eds.) STACS 1992. LNCS, vol. 577, pp. 389–400. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  31. Xu, G., Kang, L., Shan, E.: Acyclic domination on bipartite permutation graphs. Information Processing Letters 99(4), 139–144 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bousquet, N., Gonçalves, D., Mertzios, G.B., Paul, C., Sau, I., Thomassé, S. (2012). Parameterized Domination in Circle Graphs. In: Golumbic, M.C., Stern, M., Levy, A., Morgenstern, G. (eds) Graph-Theoretic Concepts in Computer Science. WG 2012. Lecture Notes in Computer Science, vol 7551. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34611-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34611-8_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34610-1

  • Online ISBN: 978-3-642-34611-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics