Abstract
A circle graph is the intersection graph of a set of chords in a circle. Keil [Discrete Applied Mathematics, 42(1):51-63, 1993] proved that Dominating Set, Connected Dominating Set, and Total Dominating Set are NP-complete in circle graphs. To the best of our knowledge, nothing was known about the parameterized complexity of these problems in circle graphs. In this paper we prove the following results, which contribute in this direction:
-
Dominating Set, Independent Dominating Set, Connected Dominating Set, Total Dominating Set, and Acyclic Dominating Set are W[1]-hard in circle graphs, parameterized by the size of the solution.
-
Whereas both Connected Dominating Set and Acyclic Dominating Set are W[1]-hard in circle graphs, it turns out that Connected Acyclic Dominating Set is polynomial-time solvable in circle graphs.
-
If T is a given tree, deciding whether a circle graph has a dominating set isomorphic to T is NP-complete when T is in the input, and FPT when parameterized by |V(T)|. We prove that the FPT algorithm is subexponential.
The third author was partially supported by EPSRC Grant EP/G043434/1. The other authors were partially supported by AGAPE (ANR-09-BLAN-0159) and GRATOS (ANR-09-JCJC-0041) projects (France).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley (1974)
Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed Parameter Algorithms for Dominated Set and Related Problems on Planar Graphs. Algorithmica 33(4), 461–493 (2002)
Alon, N., Gutner, S.: Kernels for the Dominating Set Problem on Graphs with an Excluded Minor. Electronic Colloquium on Computational Complexity (ECCC) 15(066) (2008)
Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. Journal of Computer and System Sciences 75(8), 423–434 (2009)
Bousquet, N., Gonçalves, D., Mertzios, G.B., Paul, C., Sau, I., Thomassé, S.: Parameterized Domination in Circle Graphs. Manuscript available at http://arxiv.org/abs/1205.3728 (2012)
Courcelle, B.: The Monadic Second-Order Logic of Graphs: Definable Sets of Finite Graphs. In: van Leeuwen, J. (ed.) WG 1988. LNCS, vol. 344, pp. 30–53. Springer, Heidelberg (1989)
Cygan, M., Philip, G., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Dominating set is fixed parameter tractable in claw-free graphs. Theoretical Computer Science 412(50), 6982–7000 (2011)
Damaschke, P.: The Hamiltonian Circuit Problem for Circle Graphs is NP-Complete. Information Processing Letters 32(1), 1–2 (1989)
Damian-Iordache, M., Pemmaraju, S.V.: Hardness of Approximating Independent Domination in Circle Graphs. In: Aggarwal, A.K., Pandu Rangan, C. (eds.) ISAAC 1999. LNCS, vol. 1741, pp. 56–69. Springer, Heidelberg (1999)
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999)
Elmallah, E.S., Stewart, L.K.: Independence and domination in polygon graphs. Discrete Applied Mathematics 44(1-3), 65–77 (1993)
Even, S., Itai, A.: Queues, stacks and graphs. In: Press, A. (ed.) Theory of Machines and Computations, pp. 71–86 (1971)
Fellows, M.R., Hermelin, D., Rosamond, F.A., Vialette, S.: On the parameterized complexity of multiple-interval graph problems. Theoretical Computer Science 410(1), 53–61 (2009)
Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)
Fomin, F., Gaspers, S., Golovach, P., Suchan, K., Szeider, S., Jan Van Leeuwen, E., Vatshelle, M., Villanger, Y.: k-Gap Interval Graphs. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 350–361. Springer, Heidelberg (2012), http://arxiv.org/abs/1112.3244
Garey, M., Johnson, D.: Computers and Intractability. W.H. Freeman, San Francisco (1979)
Gavril, F.: Algorithms for a maximum clique and a maximum independent set of a circle graph. Networks 3, 261–273 (1973)
Gavril, F.: Minimum weight feedback vertex sets in circle graphs. Information Processing Letters 107(1), 1–6 (2008)
Gioan, E., Paul, C., Tedder, M., Corneil, D.: Circle Graph Recognition in Time O(n + m)·α(n + m). Manuscript available at http://arxiv.org/abs/1104.3284 (2011)
Hedetniemi, S.M., Hedetniemi, S.T., Rall, D.F.: Acyclic domination. Discrete Mathematics 222(1-3), 151–165 (2000)
Jiang, M., Zhang, Y.: Parameterized Complexity in Multiple-Interval Graphs: Domination. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 27–40. Springer, Heidelberg (2012)
Keil, J.M.: The complexity of domination problems in circle graphs. Discrete Applied Mathematics 42(1), 51–63 (1993)
Keil, J.M., Stewart, L.: Approximating the minimum clique cover and other hard problems in subtree filament graphs. Discrete Applied Mathematics 154(14), 1983–1995 (2006)
Kloks, T.: Treewidth of circle graphs. International Journal of Foundations of Computer Science 7(2), 111–120 (1996)
Marx, D.: Parameterized Complexity of Independence and Domination on Geometric Graphs. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 154–165. Springer, Heidelberg (2006)
Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press (2006)
Sherwani, N.A.: Algorithms for VLSI Physical Design Automation. Kluwer Academic Press (1992)
Spinrad, J.: Recognition of circle graphs. Journal of Algorithms 16(2), 264–282 (1994)
Unger, W.: On the k-Colouring of Circle-Graphs. In: Cori, R., Wirsing, M. (eds.) STACS 1988. LNCS, vol. 294, pp. 61–72. Springer, Heidelberg (1988)
Unger, W.: The Complexity of Colouring Circle Graphs (Extended Abstract). In: Finkel, A., Jantzen, M. (eds.) STACS 1992. LNCS, vol. 577, pp. 389–400. Springer, Heidelberg (1992)
Xu, G., Kang, L., Shan, E.: Acyclic domination on bipartite permutation graphs. Information Processing Letters 99(4), 139–144 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bousquet, N., Gonçalves, D., Mertzios, G.B., Paul, C., Sau, I., Thomassé, S. (2012). Parameterized Domination in Circle Graphs. In: Golumbic, M.C., Stern, M., Levy, A., Morgenstern, G. (eds) Graph-Theoretic Concepts in Computer Science. WG 2012. Lecture Notes in Computer Science, vol 7551. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34611-8_31
Download citation
DOI: https://doi.org/10.1007/978-3-642-34611-8_31
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34610-1
Online ISBN: 978-3-642-34611-8
eBook Packages: Computer ScienceComputer Science (R0)