Abstract
In the absence of external stimuli, fluctuations in cerebral activity can be used to reveal intrinsic structures. Well-conditioned probabilistic models of this so-called resting-state activity are needed to support neuroscientific hypotheses. Exploring two specific descriptions of resting-state fMRI, namely spatial analysis and connectivity graphs, we discuss the progress brought by statistical learning techniques, but also the neuroscientific picture that they paint, and possible modeling pitfalls.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Beckmann, C.F., Smith, S.M.: Probabilistic independent component analysis for functional magnetic resonance imaging. Trans. Med. Im.Ā 23, 137 (2004)
Bento, J., Montanari, A.: Which graphical models are difficult to learn? In: Adv. NIPS, p. 1303 (2009)
Bialonski, S., Horstmann, M., Lehnertz, K.: From brain to earth and climate systems: Small-world interaction networks or not? ChaosĀ 20, 013134 (2010)
Biswal, B., Zerrin Yetkin, F., Haughton, V., Hyde, J.: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med.Ā 34, 53719 (1995)
Biswal, B., et al.: Toward discovery science of human brain function. Proc. Ntl. Acad. Sci.Ā 107, 4734 (2010)
Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci.Ā 10, 186 (2009)
Calhoun, V.D., Adali, T., Pearlson, G.D., Pekar, J.J.: A method for making group inferences from fMRI data using independent component analysis. Hum. Brain Mapp.Ā 14, 140 (2001)
Cole, D., Smith, S., Beckmann, C.: Advances and pitfalls in the analysis and interpretation of resting-state fMRI data. Frontiers in Systems NeuroscienceĀ 4 (2010)
Damoiseaux, J.S., et al.: Consistent resting-state networks across healthy subjects. Proc. Natl. Acad. Sci.Ā 103, 13848 (2006)
Daubechies, I., et al.: Independent component analysis for brain fMRI does not select for independence. Proc. Natl. Acad. Sci.Ā 106, 10415 (2009)
He, Y., et al.: Uncovering intrinsic modular organization of spontaneous brain activity in humans. PLoS OneĀ 4, e5226 (2009)
Jenatton, R., Obozinski, G., Bach, F.: Structured sparse principal component analysis. In: Proc. AISTATS (2010)
Kiviniemi, V., et al.: Functional segmentation of the brain cortex using high model order group PICA. Hum. Brain Map. (2009)
McIntosh, A.: Moving between functional and effective connectivity. In: Sporns, O. (ed.) Analysis and Function of Large-Scale Brain Networks, p. 15. Society for Neuroscience (2010)
Smith, S., et al.: Network modelling methods for fMRI. NeuroimageĀ 54, 875 (2011)
Varoquaux, G., Gramfort, A., Poline, J.B., Thirion, B.: Brain covariance selection: better individual functional connectivity models using population prior. In: Adv. NIPS (2010)
Varoquaux, G., Keller, M., Poline, J., Ciuciu, P., Thirion, B.: ICA-based sparse features recovery from fMRI datasets. In: ISBI, p. 1177 (2010)
Varoquaux, G., et al.: A group model for stable multi-subject ICA on fMRI datasets. NeuroImageĀ 51, 288 (2010)
Varoquaux, G., Gramfort, A., Pedregosa, F., Michel, V., Thirion, B.: Multi-subject Dictionary Learning to Segment an Atlas of Brain Spontaneous Activity. In: SzĆ©kely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol.Ā 6801, pp. 562ā573. Springer, Heidelberg (2011)
Varoquaux, G., Gramfort, A., Poline, J.B., Thirion, B.: Markov models for fMRI correlation structure: is brain functional connectivity small world, or decomposable into networks? Journal of Physiology - Paris, epub ahead of print (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Varoquaux, G., Thirion, B. (2012). Statistical Learning for Resting-State fMRI: Successes and Challenges. In: Langs, G., Rish, I., Grosse-Wentrup, M., Murphy, B. (eds) Machine Learning and Interpretation in Neuroimaging. Lecture Notes in Computer Science(), vol 7263. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34713-9_22
Download citation
DOI: https://doi.org/10.1007/978-3-642-34713-9_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34712-2
Online ISBN: 978-3-642-34713-9
eBook Packages: Computer ScienceComputer Science (R0)