Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Novel Morphological Algorithms for Dominating Sets on Graphs with Applications to Image Analysis

  • Conference paper
Combinatorial Image Analaysis (IWCIA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7655))

Included in the following conference series:

Abstract

In this paper, we extend the morphological operators defined for graphs by Cousty et al. to use structuring elements. We then apply these extended operators to develop algorithms for Minimum Dominating Set (MDS) and Minimum Independent Dominating Set (MIDS) on incomplete grid graphs which correspond to binary images with 4-connected neighbourhoods. We show that our algorithm performs as well as the best known heuristic for Minimum Independent Dominating Set. We apply the extended morphological graph operators and algorithms to various image analysis tasks such as distance transforms, skeletons and clustering. In particular, we propose a novel MIDS Skeleton that may potentially reduce the time for reconstructing the original objects. A hierarchical clustering algorithm (also using MIDS) is proposed. This algorithm is analogous to the conventional algorithms that use a distance threshold for clustering. We illustrate the proposed algorithms on several example images and conclude that they are useful in image analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Acton, S.T.: Fast algorithms for area morphology. Digital Signal Processing 11(3), 187–203 (2001)

    Article  Google Scholar 

  2. Basagni, S.: Distributed clustering for ad hoc networks. In: Proceedings of ISPAN 1999 International Symposium on Parallel Architectures, Algorithms and Networks, pp. 310–315 (1999)

    Google Scholar 

  3. Bloch, I.: Lattices of fuzzy sets and bipolar fuzzy sets and mathematical morphology. Information Sciences 181, 2002–2015 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bloch, I., Bretto, A.: Mathematical Morphology on Hypergraphs: Preliminary Definitions and Results. In: Domenjoud, E. (ed.) DGCI 2011. LNCS, vol. 6607, pp. 429–440. Springer, Heidelberg (2011)

    Google Scholar 

  5. Bondy, A., Murty, U.: Graph Theory. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  6. Chen, Y., Dougherty, E.R.: Texture Classification by Gray-Scale Morphological Granulometries. In: Maragos, P. (ed.) Visual Communications and Image Processing 1992. SPIE, vol. 1818, pp. 931–942 (1992)

    Google Scholar 

  7. Chen, Y.P., Liestman, A.L., Liu, J.: Clustering algorithms for ad hoc wireless networks. Ad Hoc and Sensor Networks, 145–164 (2006)

    Google Scholar 

  8. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discrete Mathematics, 165–177 (1990)

    Google Scholar 

  9. Comer, M.L., Delp, E.J.: Morphological operations for color image processing. J. Electronic Imaging 8(3), 279–289 (1999)

    Article  Google Scholar 

  10. Cousty, J., Bertrand, G., Couprie, M., Najman, L.: Collapses and Watersheds in Pseudomanifolds. In: Wiederhold, P., Barneva, R.P. (eds.) IWCIA 2009. LNCS, vol. 5852, pp. 397–410. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Cousty, J., Najman, L., Serra, J.: Some Morphological Operators in Graph Spaces. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) ISMM 2009. LNCS, vol. 5720, pp. 149–160. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Dias, F., Cousty, J., Najman, L.: Some morphological operators on simplicial complex spaces. In: Proceedings of the 16th IAPR International Conference on Discrete Geometry for Computer Imagery, DGCI 2011, pp. 441–452 (2011)

    Google Scholar 

  13. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vision 59(2), 167–181 (2004)

    Article  Google Scholar 

  14. Felzenszwalb, P.F., Zabih, R.: Dynamic programming and graph algorithms in computer vision. IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 721–740 (2011)

    Article  Google Scholar 

  15. Fisher, R.: Image processing learning resources, http://homepages.inf.ed.ac.uk/rbf/HIPR2/thin.htm

  16. Garey, M., Johnson, D.S.: Computers and Tractability, A guide to the theory of NP-Completeness. Freeman and Company, New York (1979)

    Google Scholar 

  17. Géraud, T., Talbot, H., Droogenbroeck, M.V.: Algorithms for mathematical morphology. In: Najman, L., Talbot, H. (eds.) Mathematical Morphology, pp. 323–353. John Wiley and Sons Inc. (2010)

    Google Scholar 

  18. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Addison Wesley, New York (1993)

    Google Scholar 

  19. Heijmans, H., Vincent, L.: Graph morphology in image analysis. In: Dougherty, E. (ed.) Mathematical Morphology in Image Processing, pp. 171–203. Marcel Dekker, New York (1992)

    Google Scholar 

  20. Maragos, P.: Pattern Spectrum and Multiscale Shape Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 11, 701–715 (1989)

    Article  MATH  Google Scholar 

  21. Meyer, F., Stawiaski, J.: Morphology on Graphs and Minimum Spanning Trees. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) ISMM 2009. LNCS, vol. 5720, pp. 161–170. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  22. Nieberg, T., Hurink, J.L.: A PTAS for the Minimum Dominating Set Problem in Unit Disk Graphs. In: Erlebach, T., Persinao, G. (eds.) WAOA 2005. LNCS, vol. 3879, pp. 296–306. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  23. Popev, A.T.: Morphological operations on fuzzy sets. In: Proceedings of Fifth International Conference on Image Processing and its Applications, pp. 837–840 (1995)

    Google Scholar 

  24. Sartor, L.J., Weeks, A.R.: Morphological operations on color images. J. Electron. Imaging 10, 548–559 (2001)

    Article  Google Scholar 

  25. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, New York (1982)

    MATH  Google Scholar 

  26. Shen, C., Li, T.: Multi-document summarization via the minimum dominating set. In: Proceedings 23rd International Conference on Computational Linguistics (Coling 2010), pp. 984–992 (August 2010)

    Google Scholar 

  27. Shi, J., Malik, J.: Normalized cuts and image segmentation. In: Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition (CVPR 1997), pp. 731–737 (1997)

    Google Scholar 

  28. Sternberg, S.R.: Grayscale morphology. Comput. Vision Graph. Image Process. 35(3), 333–355 (1986)

    Article  MathSciNet  Google Scholar 

  29. Vincent, L.: Morphological algorithms. In: Dougherty, E. (ed.) Mathematical Morphology in Image Processing, pp. 255–288. Marcel Dekker, New York (1992)

    Google Scholar 

  30. Wattenhoffer, R.: Distributed dominating set approximation, http://www.disco.ethz.ch/lectures/ss04/distcomp/lecture/chapter12.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Potluri, A., Bhagvati, C. (2012). Novel Morphological Algorithms for Dominating Sets on Graphs with Applications to Image Analysis. In: Barneva, R.P., Brimkov, V.E., Aggarwal, J.K. (eds) Combinatorial Image Analaysis. IWCIA 2012. Lecture Notes in Computer Science, vol 7655. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34732-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34732-0_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34731-3

  • Online ISBN: 978-3-642-34732-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics