Abstract
Zero-correlation cryptanalysis uses linear approximations holding with probability exactly 1/2. In this paper, we reveal fundamental links of zero-correlation distinguishers to integral distinguishers and multidimensional linear distinguishers. We show that an integral implies zero-correlation linear approximations and that a zero-correlation linear distinguisher is actually a special case of multidimensional linear distinguishers. These observations provide new insight into zero-correlation cryptanalysis which is illustrated by attacking a Skipjack variant and round-reduced CAST-256 without weak key assumptions.
Chapter PDF
Similar content being viewed by others
Keywords
References
Baignères, T., Junod, P., Vaudenay, S.: How Far Can We Go Beyond Linear Cryptanalysis? In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 432–450. Springer, Heidelberg (2004)
Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31 Rounds Using Impossible Differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999)
Biham, E., Biryukov, A., Shamir, A.: Miss in the Middle Attacks on IDEA and Khufu. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 124–138. Springer, Heidelberg (1999)
Biryukov, A., De Cannière, C., Quisquater, M.: On Multiple Linear Approximations. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 1–22. Springer, Heidelberg (2004)
Biryukov, A., Shamir, A.: Structural Cryptanalysis of SASAS. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 394–405. Springer, Heidelberg (2001)
Bogdanov, A., Leander, G., Nyberg, K., Wang, M.: Integral and Multidimensional Linear Distinguishers with Correlation Zero. IACR ePrint Archive report (2012)
Bogdanov, A., Rijmen, V.: Linear Hulls with Correlation Zero and Linear Cryptanalysis of Block Ciphers. Designs, Codes and Cryptography. Springer (to appear, 2012); preprint available as Cryptology ePrint Archive: Report 2011/123, http://eprint.iacr.org/2011/123
Bogdanov, A., Wang, M.: Zero Correlation Linear Cryptanalysis with Reduced Data Complexity. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 29–48. Springer, Heidelberg (2012)
Borst, J., Knudsen, L.R., Rijmen, V.: Two Attacks on Reduced IDEA. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 1–13. Springer, Heidelberg (1997)
Carlet, C.: Vectorial (multi-output) Boolean Functions for Cryptography. Cambridge University Press (to appear)
Carlet, C.: Boolean Functions for Cryptography and Error Correcting Codes. Cambridge University Press (to appear), preliminary version, http://www-rocq.inria.fr/codes/Claude.Carlet/chap-fcts-Bool.pdf
Daemen, J., Knudsen, L.R., Rijmen, V.: The Block Cipher SQUARE. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)
Englund, H., Maximov, A.: Attack the Dragon. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.) INDOCRYPT 2005. LNCS, vol. 3797, pp. 130–142. Springer, Heidelberg (2005)
Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting, D.: Improved Cryptanalysis of Rijndael. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 213–230. Springer, Heidelberg (2001)
Hermelin, M., Cho, J.Y., Nyberg, K.: Multidimensional Extension of Matsui’s Algorithm 2. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 209–227. Springer, Heidelberg (2009)
Hermelin, M., Nyberg, K.: Linear cryptanalysis using multiple linear approximations. In: Junod, P., Canteaut, A. (eds.) Advanced Linear Cryptanalysis of Block and Stream Ciphers. IOS Press (2011)
Hermelin, M., Cho, J.Y., Nyberg, K.: Multidimensional Linear Cryptanalysis of Reduced Round Serpent. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS, vol. 5107, pp. 203–215. Springer, Heidelberg (2008)
Kaliski Jr., B.S., Robshaw, M.J.B.: Linear Cryptanalysis Using Multiple Approximations. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 26–39. Springer, Heidelberg (1994)
Knudsen, L.R., Robshaw, M.J.B., Wagner, D.: Truncated Differentials and Skipjack. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 165–180. Springer, Heidelberg (1999)
Knudsen, L.R., Wagner, D.: On the structure of Skipjack. Discrete Applied Mathematics 111(1-2), 103–116 (2001)
Knudsen, L.R., Wagner, D.: Integral Cryptanalysis. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002)
Leander, G.: On Linear Hulls, Statistical Saturation Attacks, PRESENT and a Cryptanalysis of PUFFIN. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 303–322. Springer, Heidelberg (2011)
Lucks, S.: The Saturation Attack - A Bait for Twofish. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 1–15. Springer, Heidelberg (2002)
Seki, H., Kaneko, T.: Differential Cryptanalysis of CAST-256 Reduced to Nine Quad-rounds. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences E84A(4), 913–918 (2001)
Skipjack and KEA Algorithm Specifications, Version 2.0, (May 29, 1998); The National Institute of Standards and Technology’s web page, http://csrc.nist.gov/groups/ST/toolkit/documents/skipjack/skipjack.pdf
Wagner, D.: The Boomerang Attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999)
Wang, M., Wang, X., Hu, C.: New Linear Cryptanalytic Results of Reduced-Round of CAST-128 and CAST-256. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 429–441. Springer, Heidelberg (2009)
Wang, Q., Chen, J.: 18-Round Impossible Differential for CAST-256 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 International Association for Cryptologic Research
About this paper
Cite this paper
Bogdanov, A., Leander, G., Nyberg, K., Wang, M. (2012). Integral and Multidimensional Linear Distinguishers with Correlation Zero. In: Wang, X., Sako, K. (eds) Advances in Cryptology – ASIACRYPT 2012. ASIACRYPT 2012. Lecture Notes in Computer Science, vol 7658. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34961-4_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-34961-4_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34960-7
Online ISBN: 978-3-642-34961-4
eBook Packages: Computer ScienceComputer Science (R0)