Abstract
In this paper, we present the first inner-product encryption (IPE) schemes that are unbounded in the sense that the public parameters do not impose additional limitations on the predicates and attributes used for encryption and decryption keys. All previous IPE schemes were bounded, or have a bound on the size of predicates and attributes given public parameters fixed at setup. The proposed unbounded IPE schemes are fully (adaptively) secure and fully attribute-hiding in the standard model under a standard assumption, the decisional linear (DLIN) assumption. In our unbounded IPE schemes, the inner-product relation is generalized, where the two vectors of inner-product can be different sizes and it provides a great improvement of efficiency in many applications. We also present the first fully secure unbounded attribute-based encryption (ABE) schemes, and the security is proven under the DLIN assumption in the standard model. To achieve these results, we develop novel techniques, indexing and consistent randomness amplification, on the (extended) dual system encryption technique and the dual pairing vector spaces (DPVS).
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Attrapadung, N., Libert, B.: Functional Encryption for Inner Product: Achieving Constant-Size Ciphertexts with Adaptive Security or Support for Negation. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 384–402. Springer, Heidelberg (2010)
Beimel, A.: Secure schemes for secret sharing and key distribution. PhD Thesis, Israel Institute of Technology, Technion, Haifa (1996)
Bellare, M., Waters, B., Yilek, S.: Identity-Based Encryption Secure against Selective Opening Attack. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 235–252. Springer, Heidelberg (2011)
Boneh, D., Waters, B.: Conjunctive, Subset, and Range Queries on Encrypted Data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007)
Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Juels, A., Wright, R.N., di Vimercati, S.D.C. (eds.) ACM CCS 2006, pp. 89–98. ACM (2006)
Katz, J., Sahai, A., Waters, B.: Predicate Encryption Supporting Disjunctions, Polynomial Equations, and Inner Products. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)
Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully Secure Functional Encryption: Attribute-Based Encryption and (Hierarchical) Inner Product Encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010), full version available at http://eprint.iacr.org/2010/110
Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson [17], pp. 568–588
Lewko, A., Waters, B.: Unbounded HIBE and attribute-based encryption. In: Paterson [17], pp. 547–567
Lewko, A., Waters, B.: New Proof Methods for Attribute-Based Encryption: Achieving Full Security through Selective Techniques. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012)
Okamoto, T., Takashima, K.: Hierarchical Predicate Encryption for Inner-Products. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231. Springer, Heidelberg (2009)
Okamoto, T., Takashima, K.: Fully Secure Functional Encryption with General Relations from the Decisional Linear Assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010), full version is available at http://eprint.iacr.org/2010/563
Okamoto, T., Takashima, K.: Achieving Short Ciphertexts or Short Secret-Keys for Adaptively Secure General Inner-Product Encryption. In: Lin, D., Tsudik, G., Wang, X. (eds.) CANS 2011. LNCS, vol. 7092, pp. 138–159. Springer, Heidelberg (2011), full version is available at http://eprint.iacr.org/2011/648
Waters, B.: Ciphertext-Policy Attribute-Based Encryption: An Expressive, Efficient, and Provably Secure Realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011), full version is available at http://eprint.iacr.org/2011/543
Okamoto, T., Takashima, K.: Efficient (hierarchical) inner product encryption tightly reduced from the decisional linear assumption. To appear in IEICE Trans. In: Fundamentals E96-A(1) (to appear)
Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-monotonic access structures. In: Ning, P., di Vimercati, S.D.C., Syverson, P.F. (eds.) ACM CCS 2007, pp. 195–203. ACM (2007)
Paterson, K.G. (ed.): EUROCRYPT 2011. LNCS, vol. 6632. Springer, Heidelberg (2011)
Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)
Waters, B.: Dual System Encryption: Realizing Fully Secure IBE and HIBE under Simple Assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009)
Waters, B.: Ciphertext-Policy Attribute-Based Encryption: An Expressive, Efficient, and Provably Secure Realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 International Association for Cryptologic Research
About this paper
Cite this paper
Okamoto, T., Takashima, K. (2012). Fully Secure Unbounded Inner-Product and Attribute-Based Encryption. In: Wang, X., Sako, K. (eds) Advances in Cryptology – ASIACRYPT 2012. ASIACRYPT 2012. Lecture Notes in Computer Science, vol 7658. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34961-4_22
Download citation
DOI: https://doi.org/10.1007/978-3-642-34961-4_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34960-7
Online ISBN: 978-3-642-34961-4
eBook Packages: Computer ScienceComputer Science (R0)