Abstract
In the last years the use of large matrices and their algebraic properties proved to be useful to instantiate new cryptographic primitives like Lossy Trapdoor Functions and encryption schemes with improved security, like Key Dependent Message resilience. In these constructions the rank of a matrix is assumed to be hard to guess when the matrix is hidden by elementwise exponentiation. This problem, that we call here the Rank Problem, is known to be related to the Decisional Diffie-Hellman problem, but in the known reductions between both problems there appears a loss-factor in the advantage which grows linearly with the rank of the matrix.
In this paper, we give a new and better reduction between the Rank problem and the Decisional Diffie-Hellman problem, such that the reduction loss-factor depends logarithmically in the rank. This new reduction can be applied to a number of cryptographic constructions, improving their efficiency. The main idea in the reduction is to build from a DDH tuple a matrix which rank shifts from r to 2r, and then apply a hybrid argument to deal with the general case. In particular this technique widens the range of possible values of the ranks that are tightly related to DDH.
On the other hand, the new reduction is optimal as we show the nonexistence of more efficient reductions in a wide class containing all the “natural” ones (i.e., black-box and algebraic). The result is twofold: there is no (natural) way to build a matrix which rank shifts from r to 2r + α for α > 0, and no hybrid argument can improve the logarithmic loss-factor obtained in the new reduction.
The techniques used in the paper extend naturally to other “algebraic” problems like the Decisional Linear or the Decisional 3-Party Diffie- Hellman problems, also obtaining reductions of logarithmic complexity.
Chapter PDF
Similar content being viewed by others
Keywords
References
Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)
Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-Secure Encryption from Decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 108–125. Springer, Heidelberg (2008)
Boneh, D., Sahai, A., Waters, B.: Fully Collusion Resistant Traitor Tracing with Short Ciphertexts and Private Keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 573–592. Springer, Heidelberg (2006)
Galindo, D., Herranz, J., Villar, J.L.: Identity-based encryption with master key-dependent message security and applications. IACR Cryptology ePrint Archive, 142 (2012)
Galindo, D., Herranz, J., Villar, J.: Identity-Based Encryption with Master Key-Dependent Message Security and Leakage-Resilience. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 627–642. Springer, Heidelberg (2012)
Green, M., Hohenberger, S.: Practical Adaptive Oblivious Transfer from Simple Assumptions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 347–363. Springer, Heidelberg (2011)
Hofheinz, D.: All-but-many lossy trapdoor functions. Cryptology ePrint Archive, Report 2011/230 (2011), http://eprint.iacr.org/
Hofheinz, D.: All-But-Many Lossy Trapdoor Functions. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 209–227. Springer, Heidelberg (2012)
Laguillaumie, F., Paillier, P., Vergnaud, D.: Universally convertible directed signatures. In: Roy [14], pp. 682–701
Naor, M., Segev, G.: Public-Key Cryptosystems Resilient to Key Leakage. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)
Pascal Paillier and Damien Vergnaud. Discrete-log-based signatures may not be equivalent to discrete log. In: Roy [14], pp. 1–20
Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. IACR Cryptology ePrint Archive, 279 (2007)
Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Dwork, C. (ed.) STOC, pp. 187–196. ACM (2008)
Roy, B. (ed.): ASIACRYPT 2005. LNCS, vol. 3788. Springer, Heidelberg (2005)
Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM 27(4), 701–717 (1980)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 International Association for Cryptologic Research
About this paper
Cite this paper
Villar, J.L. (2012). Optimal Reductions of Some Decisional Problems to the Rank Problem. In: Wang, X., Sako, K. (eds) Advances in Cryptology – ASIACRYPT 2012. ASIACRYPT 2012. Lecture Notes in Computer Science, vol 7658. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34961-4_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-34961-4_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34960-7
Online ISBN: 978-3-642-34961-4
eBook Packages: Computer ScienceComputer Science (R0)