Abstract
Operations of modern organizations critically depend on Data Centers (DC). Due to ad hoc additions from diverse business units over time, the IT resources in a DC get unwieldy and complex. Transformations of DC - server consolidation, migration, application/data simplification, technology standardization - are important for cost, efficiency and reliability. Even when a specific transformation is identified (“consolidate these 100 existing servers into these 48 new servers”) it is difficult to generate a detailed optimal project plan for its execution. The project plan must identify all the tasks involved, identify an optimal team (size and expertise) and generate a detailed work schedule that meets the and respects the constraints and dependencies among the tasks. We present a methodology to generate such a plan automatically from given ”high-level” IT transformation specifications (“as-is” and “to-be” states). We adopt a heuristic forward chaining metric temporal planner engine (SAPA) to generate a project plan that attempts to optimize the overall time and team-size. The idea is to capture the domain-knowledge as reusable planning action. This automation reduces the efforts and errors in manual project planning. The method can be extended to projects in other domains.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gajendragadkar, A., Bhardwaj, R., Sarda, M., Malavade, C.: A systematic approach for data center migration analytics driven methodology. In: TACTiCS, TCS Technical Architects Conference 2010 (2010)
Ramakrishnan, K.K., Shenoy, P., Van der Merwe, J.: Live data center migration across wans: a robust cooperative context aware approach. In: Proceedings of the 2007 SIGCOMM Workshop on Internet Network Management, INM 2007, pp. 262–267. ACM (2007)
Hacking, S., Hudzia, B.: Improving the live migration process of large enterprise applications. In: Proceedings of the 3rd International Workshop on Virtualization Technologies in Distributed Computing, VTDC 2009, pp. 51–58. ACM (2009)
Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I., Warfield, A.: Live migration of virtual machines. In: Proceedings of the 2nd Conference on Symposium on Networked Systems Design & Implementation, NSDI 2005, vol. 2, pp. 273–286. USENIX Association (2005)
Nelson, M., Lim, B.H., Hutchins, G.: Fast transparent migration for virtual machines. In: Proceedings of the Annual Conference on USENIX Annual Technical Conference, ATEC 2005, pp. 25–25. USENIX Association (2005)
Bradford, R., Kotsovinos, E., Feldmann, A., Schiöberg, H.: Live wide-area migration of virtual machines including local persistent state. In: Proceedings of the 3rd International Conference on Virtual Execution Environments, VEE 2007, pp. 169–179. ACM (2007)
Fox, M., Long, D.: PDDL2.1: An extension to PDDL for expressing temporal planning domains. Journal of Artificial Intelligence Research 20, 61–124 (2003)
Do, M., Kambhampati, S.: Sapa: A multi-objective metric temporal planner. Journal of Artificial Intelligence Research 20, 155–194 (2003)
Ghallab, M., Nau, D., Traverso, P.: Automated planning theory and practice. Morgan Kaufmann Publishers (2006)
El Maghraoui, K., Meghranjani, A., Eilam, T., Kalantar, M., Konstantinou, A.V.: Model Driven Provisioning: Bridging the Gap Between Declarative Object Models and Procedural Provisioning Tools. In: van Steen, M., Henning, M. (eds.) Middleware 2006. LNCS, vol. 4290, pp. 404–423. Springer, Heidelberg (2006)
Herry, H., Anderson, P.: Planning with global constraints for computing infrastructure reconfiguration. In: Proceedings of the 2012 AAAI Workshop on Problem Solving Using Classical Planners. AAAI Press (2012)
Yoon, Y., Robinson, N., Muthusamy, V., Jacobsen, H.A., McIlraith, S.A.: Planning the transformation of network topologies. In: Proceedings of the 2012 AAAI Workshop on Problem Solving Using Classical Planners. AAAI Press (2012)
Hoffmann, J., Weber, I., Kraft, F.M.: Sap speaks pddl: Exploiting a software-engineering model for planning in business process management. Journal of Artificial Intelligence Research 44, 587–632 (2012)
Jonsson, A., Rovatsos, M.: Scaling up multiagent planning: A best-response approach. In: Proceedings of the Twenty-First International Conference on Automated Planning and Scheduling (ICAPS 2011), pp. 114–121. AAAI (2011)
Kvarnstrom, J.: Planning for loosely coupled agents using partial order forward-chaining. In: Proceedings of the Twenty-First International Conference on Automated Planning and Scheduling (ICAPS 2011), pp. 138–145 (2011)
Nissim, R., Brafman, R.I., Domshlak, C.: A general, fully distributed multi-agent planning algorithm. In: Proceedings AAMAS 2010, pp. 1323–1330 (2010)
Beaudryi, E., Kabanza, F., Michaud, F.: Planning for concurrent action executions under action duration uncertainty using dynamically generated bayesian networks. In: Proceedings of the Twentieth International Conference on Automated Planning and Scheduling (ICAPS 2010), pp. 10–17 (2010)
Larbi, R.B., Konieczny, S., Marquis, P.: Extending Classical Planning to the Multi-agent Case: A Game-Theoretic Approach. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS (LNAI), vol. 4724, pp. 731–742. Springer, Heidelberg (2007)
Ephrati, E., Rosenschein, J.S.: Multi-agent planning as search for a consensus that maximizes social welfare. In: Castelfranchi, C., Werner, E. (eds.) MAAMAW 1992. LNCS, vol. 830, pp. 207–226. Springer, Heidelberg (1994)
Dimopoulos, Y., Moraitis, P.: Multi-agent coordination and cooperation through classical planning. In: Proceedings IAT 2006, pp. 398–402 (2006)
Cox, J.S., Durfee, E.H.: An efficient algorithm for multiagent plan coordination. In: Proceedings AAMAS 2005, pp. 828–835 (2005)
Bacchus, F., Ady, M.: Planning with resources and concurrency: a forward chaining approach. In: Proc. International Joint Conference on Artificial Intelligence (IJCAI 2001), pp. 417–424 (2001)
Mausam, Weld, D.: Planning with durative actions in stochastic domains. Journal of Artificial Intelligence Research 31, 33–82 (2008)
Alford, R., Kuter, U., Nau, D.: Translating HTNs to PDDL: A small amount of domain knowledge can go a long way. In: Proceedings of IJCAI 2009, pp. 1629–1634 (2009)
Raimondi, F., Pecheur, C., Brat, G.: PDVer, a tool to verify pddl planning domains. In: Proceedings of ICAPS 2009 Workshop on Verification and Validation of Planning and Scheduling Systems, Thessaloniki, Greece (2009)
Gerevini, A., Haslum, P., Long, D., Saetti, A., Dimopoulos, Y.: Deterministic planning in the fifth international planning competition: PDDL3 and experimental evaluation of the planners. Artificial Intelligence 173(5-6), 619–668 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ahuja, A.L., Palshikar, G.K. (2012). Generating Project Plans for Data Center Transformations. In: Thielscher, M., Zhang, D. (eds) AI 2012: Advances in Artificial Intelligence. AI 2012. Lecture Notes in Computer Science(), vol 7691. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35101-3_65
Download citation
DOI: https://doi.org/10.1007/978-3-642-35101-3_65
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35100-6
Online ISBN: 978-3-642-35101-3
eBook Packages: Computer ScienceComputer Science (R0)