Abstract
Distributed control of discrete-event systems (DES) means control implemented by asynchronous message passing automata that can neither perform synchronized actions nor can read one another’s state. We explain some significant differences between this emerging area and earlier forms of control. Distributed control synthesis is challenging. To initiate a discussion on this topic, we outline a methodology based on the synthesis of distributable Petri nets (PN). The methodology is illustrated via a well-known example from distributed computing, the dining philosophers, for which three distributed solutions are produced. The paper provides a survey of DES control for PN researchers and a survey of distributed PN synthesis for DES researchers, with the intent to create a common basis for further investigation of this research track.
Work partially supported by the EC-FP7 under project DISC (Grant Agreement INFSO-ICT-224498) and NSERC.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Badouel, E., Darondeau, P.: Theory of Regions. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 529–586. Springer, Heidelberg (1998)
Badouel, E., Caillaud, B., Darondeau, P.: Distributing Finite Automata Through Petri Net Synthesis. Formal Aspects of Computing 13, 447–470 (2002)
Barrett, G., Lafortune, S.: Decentralized Supervisory Control with Communicating Controllers. IEEE Trans. Autom. Control 45(9), 1620–1638 (2000)
Brand, D., Zafiropulo, P.: On Communicating Finite-State Machines. J. of the ACM 30(2), 323–342 (1983)
Caillaud, B.: http://www.irisa.fr/s4/tools/synet/
Chernikova, N.V.: Algorithm for finding a general formula for the non-negative solutions of a system of linear inequalities. USSR Computational Mathematics and Mathematical Physics 5(2), 228–233 (1965)
Cai, K., Wonham, W.M.: Supervisor Localization: A Top-Down Approach to Distributed Control of Discrete-Event Systems. IEEE Trans. Autom. Control 55(3), 605–618 (2010)
Darondeau, P.: Unbounded Petri Net Synthesis. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 413–438. Springer, Heidelberg (2004)
Darondeau, P.: Distributed Implementation of Ramadge-Wonham Supervisory Control with Petri Nets. In: CDC-ECC 2005, pp. 2107–2112 (2005)
Giua, A., Di Cesare, F., Silva, M.: Generalized Mutual Exclusion Constraints on Nets with Uncontrollable Transitions. In: IEEE-SMC 1992, pp. 974–979 (1992)
Genest, B., Gimbert, H., Muscholl, A., Walukiewicz, I.: Optimal Zielonka-Type Construction of Deterministic Asynchronous Automata. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part II. LNCS, vol. 6199, pp. 52–63. Springer, Heidelberg (2010)
Ghaffari, A., Rezg, N., Xie, X.: Algebraic and Geometric Characterization of Petri Net Controllers Using the Theory of Regions. In: WODES 2002, pp. 219–224 (2002)
Ghaffari, A., Rezg, N., Xie, X.: Design of Live and Maximally Permissive Petri Net Controller Using the Theory of Regions. IEEE Trans. Robot. Autom. 19, 137–142 (2003)
van Glabbeek, R.J., Weijland, W.P.: Branching Time and Abstraction in Bisimulation Semantics. J. of the ACM 43(3), 555–600 (1996)
Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The Synchronous Dataflow Programming Language Lustre. Proc. IEEE 79(9), 1305–1320 (1991)
Hiraishi, K.: On Solvability of a Decentralized Supervisory Control Problem with Communication. IEEE Trans. Autom. Control 54(3), 468–480 (2009)
Hoare, C.A.R.: Communicating Sequential Processes. CACM 21(8), 666–677 (1978)
Kalyon, G., Le Gall, T., Marchand, H., Massart, T.: Synthesis of Communicating Controllers for Distributed Systems. In: CDC-ECC 2011, pp. 1803–1810 (2011)
Lamouchi, H., Thistle, J.: Effective Control Synthesis for DES under Partial Observations. In: CDC 2000, pp. 22–28 (2000)
Lamport, L.: Arbiter-Free Synchronization. Distrib. Comput. 16(2/3), 219–237 (2003)
Lin, F., Wonham, W.M.: On Observability of Discrete-Event Systems. Info. Sci. 44, 173–198 (1988)
Mannani, A., Gohari, P.: Decentralized Supervisory Control of Discrete-Event Systems Over Comunication Networks. IEEE Trans. Autom. Control 53(2), 547–559 (2008)
Mukund, M., Sohoni, M.: Gossiping, Asynchronous Automata and Zielonka’s Theorem. Report TCS-94-2, Chennai Mathematical Institute (1994)
Madhusudan, P., Thiagarajan, P.S., Yang, S.: The MSO Theory of Connectedly Communicating Processes. In: Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 201–212. Springer, Heidelberg (2005)
Potop-Butucaru, D., Caillaud, B.: Correct-by-Construction Asynchronous Implementation of Modular Synchronous Specifications. In: ACSD 2005, pp. 48–57 (2005)
Ramadge, P.J., Wonham, W.M.: Supervisory Control of a Class of Discrete Event Processes. SIAM J. Control Optim. 25, 206–230 (1987)
Ramadge, P.J., Wonham, W.M.: The Control of Discrete Event Systems. Proc. of the IEEE, Special Issue on Dynamics of Discrete Event Systems 77, 81–98 (1989)
Ricker, S.L., Caillaud, B.: Mind the Gap: Expanding Communication Options in Decentralized Discrete-Event Control. In: CDC 2007, pp. 5924–5929 (2007)
Ricker, S.L.: Asymptotic Minimal Communication for Decentralized Discrete-Event Control. In: WODES 2008, pp. 486–491 (2008)
Rudie, K., Lafortune, S., Lin, F.: Minimal Communication in a Distributed Discrete-Event System. IEEE Trans. Autom. Control 48(6), 957–975 (2003)
Rudie, K., Wonham, W.M.: Think Globally, Act Locally: Decentralized Supervisory Control. IEEE Trans. Autom. Control 37(11), 1692–1708 (1992)
Thistle, J.G.: Undecidability in Decentralized Supervision. Syst. Control Lett. 54, 503–509 (2005)
Tripakis, S.: Decentralized Control of Discrete Event Systems with Bounded or Unbounded Delay Communication. IEEE Trans. Autom. Control 49(9), 1489–1501 (2004)
Wang, W., Lafortune, S., Lin, F.: Minimization of Communication of Event Occurrences in Acyclic Discrete-Event Systems. IEEE Trans. Autom. Control 53(9), 2197–2202 (2008)
Wang, Y., Lafortune, S., Kelly, T., Kudlur, M., Mahlke, S.: The Theory of Deadlock Avoidance via Discrete Control. In: POPL 2009, pp. 252–263 (2009)
Reisig, W.: Elements of Distributed Algorithms. Springer, Berlin (1998)
Xu, X., Kumar, R.: Distributed State Estimation in Discrete Event Systems. In: ACC 2009, pp. 4735–4740 (2009)
Yoo, T.S., Lafortune, S.: A General Architecture for Decentralized Supervisory Control of Discrete-Event Systems. Discrete Event Dyn. Syst. 12(3), 335–377 (2002)
Yamalidou, K., Moody, J., Lemmon, M., Antsaklis, P.: Feedback Control on Petri Nets Based on Place Invariants. Automatica 32(1), 15–28 (1996)
Zielonka, W.: Notes on Finite Asynchronous Automata. RAIRO Informatique Théorique et Applications 21, 99–135 (1987)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Darondeau, P., Ricker, L. (2012). Distributed Control of Discrete-Event Systems: A First Step. In: Jensen, K., van der Aalst, W.M., Ajmone Marsan, M., Franceschinis, G., Kleijn, J., Kristensen, L.M. (eds) Transactions on Petri Nets and Other Models of Concurrency VI. Lecture Notes in Computer Science, vol 7400. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35179-2_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-35179-2_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35178-5
Online ISBN: 978-3-642-35179-2
eBook Packages: Computer ScienceComputer Science (R0)