Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Speeding Up Shortest Path Algorithms

  • Conference paper
Algorithms and Computation (ISAAC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7676))

Included in the following conference series:

  • 1551 Accesses

Abstract

Given an arbitrary, non-negatively weighted, directed graph G = (V,E) we present an algorithm that computes all pairs shortest paths in time \(\mathcal{O}(m^* n + m \lg n + nT_\psi(m^*, n))\), where m * is the number of different edges contained in shortest paths and T ψ (m *, n) is a running time of an algorithm to solve a single-source shortest path problem (SSSP). This is a substantial improvement over a trivial n times application of ψ that runs in \(\mathcal{O}(nT_\psi(m,n))\). In our algorithm we use ψ as a black box and hence any improvement on ψ results also in improvement of our algorithm.

Furthermore, a combination of our method, Johnson’s reweighting technique and topological sorting results in an \(\mathcal{O}(m^*n + m \lg n)\) all-pairs shortest path algorithm for arbitrarily-weighted directed acyclic graphs.

In addition, we also point out a connection between the complexity of a certain sorting problem defined on shortest paths and SSSP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Karger, D., Koller, D., Phillips, S.J.: Finding the hidden path: time bounds for all-pairs shortest paths. SIAM Journal on Computing 22(6), 1199–1217 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 34(3), 596–615 (1987)

    Article  MathSciNet  Google Scholar 

  4. Demetrescu, C., Italiano, G.F.: Experimental analysis of dynamic all pairs shortest path algorithms. ACM Transactions on Algorithms 2(4), 578–601 (2006)

    Article  MathSciNet  Google Scholar 

  5. Johnson, D.B.: Efficient algorithms for shortest paths in sparse networks. J. ACM 24(1), 1–13 (1977)

    Article  MATH  Google Scholar 

  6. Thorup, M.: Undirected single-source shortest paths with positive integer weights in linear time. J. ACM 46(3), 362–394 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Pettie, S.: A new approach to all-pairs shortest paths on real-weighted graphs. Theor. Comput. Sci. 312(1), 47–74 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Pettie, S., Ramachandran, V.: A shortest path algorithm for real-weighted undirected graphs. SIAM J. Comput. 34(6), 1398–1431 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hagerup, T.: Improved Shortest Paths on the Word RAM. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 61–72. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  10. Goldberg, A.V.: Scaling algorithms for the shortest paths problem. In: Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1993, pp. 222–231. Society for Industrial and Applied Mathematics, Philadelphia (1993)

    Google Scholar 

  11. Gabow, H.N., Tarjan, R.E.: Faster scaling algorithms for network problems. SIAM J. Comput. 18(5), 1013–1036 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brodnik, A., Grgurovič, M. (2012). Speeding Up Shortest Path Algorithms. In: Chao, KM., Hsu, Ts., Lee, DT. (eds) Algorithms and Computation. ISAAC 2012. Lecture Notes in Computer Science, vol 7676. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35261-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35261-4_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35260-7

  • Online ISBN: 978-3-642-35261-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics