Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Constant Unary Constraints and Symmetric Real-Weighted Counting CSPs

  • Conference paper
Algorithms and Computation (ISAAC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7676))

Included in the following conference series:

  • 1477 Accesses

Abstract

In a discussion on the computational complexity of approximately solving Boolean counting constraint satisfaction problems (or #CSPs), we demonstrate the approximability of two constant unary constraints by an arbitrary nonempty set of real-valued constraints. A use of auxiliary free unary constraints has proven to be useful in establishing a complete classification of weighted #CSPs. Using our approximability result, we can clarify the role of such auxiliary free unary constraints by constructing approximation-preserving reductions from #SAT to #CSPs with symmetric real-valued constraints of arbitrary arities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cai, J., Lu, P.: Holographic algorithms: from arts to science. J. Comput. System Sci. 77, 41–61 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cai, J., Lu, P., Xia, M.: Holant problems and counting CSP. In: STOC 2009, pp. 715–724 (2009)

    Google Scholar 

  3. Creignou, N.: A dichotomy theorem for maximum generalized satisfiability problems. J. Comput. System Sci. 51, 511–522 (1995)

    Article  MathSciNet  Google Scholar 

  4. Creignou, N., Hermann, M.: Complexity of generalized satisfiability counting problems. Inform. Comput. 125, 1–12 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dalmau, V., Ford, D.K.: Generalized Satisfiability with Limited Occurrences per Variable: A Study through Delta-Matroid Parity. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 358–367. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Dyer, M., Goldberg, L.A., Greenhill, C., Jerrum, M.: The relative complexity of approximating counting problems. Algorithmica 38, 471–500 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dyer, M., Goldberg, L.A., Jerrum, M.: The complexity of weighted Boolean #CSP. SIAM J. Comput. 38, 1970–1986 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dyer, M., Goldberg, L.A., Jerrum, M.: An approximation trichotomy for Boolean #CSP. J. Comput. System Sci. 76, 267–277 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Schaefer, T.J.: The complexity of satisfiability problems. In: STOC 1978, pp. 216–226 (1978)

    Google Scholar 

  10. Yamakami, T.: Approximate counting for complex-weighted Boolean constraint satisfaction problems. Inform. Comput. 219, 17–38 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Yamakami, T.: A dichotomy theorem for the approximation complexity of complex-weighted bounded-degree Boolean #CSPs. Thoer. Comput. Sci. 447, 120–135 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yamakami, T.: Optimization, Randomized Approximability, and Boolean Constraint Satisfaction Problems. In: Asano, T., Nakano, S.-i., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 454–463. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yamakami, T. (2012). Constant Unary Constraints and Symmetric Real-Weighted Counting CSPs. In: Chao, KM., Hsu, Ts., Lee, DT. (eds) Algorithms and Computation. ISAAC 2012. Lecture Notes in Computer Science, vol 7676. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35261-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35261-4_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35260-7

  • Online ISBN: 978-3-642-35261-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics