Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Robust Nonparametric Data Approximation of Point Sets via Data Reduction

  • Conference paper
Algorithms and Computation (ISAAC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7676))

Included in the following conference series:

  • 1471 Accesses

Abstract

In this paper we present a novel nonparametric method for simplifying piecewise linear curves and we apply this method as a statistical approximation of structure within sequential data in the plane. We consider the problem of minimizing the average length of sequences of consecutive input points that lie on any one side of the simplified curve. Specifically, given a sequence P of n points in the plane that determine a simple polygonal chain consisting of n − 1 segments, we describe algorithms for selecting a subsequence Q ⊂ P (including the first and last points of P) that determines a second polygonal chain to approximate P, such that the number of crossings between the two polygonal chains is maximized, and the cardinality of Q is minimized among all such maximizing subsets of P. Our algorithms have respective running times \(O(n^2\sqrt{\log n})\) when P is monotonic and O(n 2log4/3 n) when P is any simple polyline.

Work was supported in part by the Natural Science and Engineering Research Council of Canada (NSERC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agarwal, P.K., Har-Peled, S., Mustafa, N.H., Wang, Y.: Near-Linear Time Approximation Algorithms for Curve Simplification. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 29–202. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Agarwal, P.K., Varadarajan, K.R.: Efficient algorithms for approximating polygonal chains. Discrete and Computational Geometry 23, 273–291 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alt, H., Guibas, L.J.: Discrete geometric shapes: Matching, interpolation, and approximation. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 121–153. Elsevier (2000)

    Google Scholar 

  4. Chan, T.M., Pǎtraşcu, M.: Counting inversions, offline orthogonal range counting and related problems. In: SODA, pp. 161–173 (2010)

    Google Scholar 

  5. Chan, W.S., Chin, F.: Approximation of Polygonal Curves with Minimum Number of Line Segments. In: Ibaraki, T., Iwama, K., Yamashita, M., Inagaki, Y., Nishizeki, T. (eds.) ISAAC 1992. LNCS, vol. 650, pp. 378–387. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  6. Douglas, D., Peucker, T.: Algorithms for the reduction of points required to represent a digitised line or its caricature. The Canadian Cartographer 10, 112–122 (1973)

    Article  Google Scholar 

  7. Han, Y.: Deterministic sorting in o(nloglogn) time and linear space. J. of Algorithms 50, 96–105 (2004)

    Article  MATH  Google Scholar 

  8. Han, Y., Thorup, M.: Integer sorting in \(o(n\sqrt{\log \log n})\) expected time and linear space. In: FOCS, pp. 135–144 (2002)

    Google Scholar 

  9. Hershberger, J., Snoeyink, J.: Cartographic line simplification and polygon csg formulae in o(nlog* n) time. Computational Geometry: Theory and Applications 11(3-4), 175–185 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Imai, H., Iri, M.: Polygonal approximation of curve-formulations and algorithms. In: Toussaint, G.T. (ed.) Computational Morphology, pp. 71–86. North-Holland (1988)

    Google Scholar 

  11. Melkman, A., O’Rourke, J.: On polygonal chain approximation. In: Toussaint, G.T. (ed.) Computational Morphology, pp. 87–95. North-Holland (1988)

    Google Scholar 

  12. Skiena, S.S.: The Algorithm Design Manual, 2nd edn. Springer (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Durocher, S., Leblanc, A., Morrison, J., Skala, M. (2012). Robust Nonparametric Data Approximation of Point Sets via Data Reduction. In: Chao, KM., Hsu, Ts., Lee, DT. (eds) Algorithms and Computation. ISAAC 2012. Lecture Notes in Computer Science, vol 7676. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35261-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35261-4_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35260-7

  • Online ISBN: 978-3-642-35261-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics