Abstract
A set S of k points in the plane is a universal point subset for a class \({\mathcal G}\) of planar graphs if every graph belonging to \({\mathcal G}\) admits a planar straight-line drawing such that k of its vertices are represented by the points of S. In this paper we study the following main problem: For a given class of graphs, what is the maximum k such that there exists a universal point subset of size k? We provide a [\({\sqrt{n} \;}\)] lower bound on k for the class of planar graphs with n vertices. In addition, we consider the value \(F(n, {\mathcal G})\) such that every set of \(F(n, {\mathcal G})\) points in general position is a universal subset for all graphs with n vertices belonging to the family \({\mathcal G}\), and we establish upper and lower bounds for \(F(n, {\mathcal G})\) for different families of planar graphs, including 4-connected planar graphs and nested-triangles graphs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bose, P.: On embedding an outer-planar graph in a point set. Comp. Geom. 23(3), 303–312 (2002)
Bose, P., Dujmovic, V., Hurtado, F., Langerman, S., Morin, P., Wood, D.R.: A polynomial bound for untangling geometric planar graphs. Discrete & Comp. Geom. 42(4), 570–585 (2009)
Brandenburg, F.-J.: Drawing planar graphs on \(\frac{8}{9}n^2\) area. Electronic Notes in Discrete Mathematics 31, 37–40 (2008)
Cabello, S.: Planar embeddability of the vertices of a graph using a fixed point set is NP-hard. J. Graph Algor. and Applic. 10(2), 353–363 (2006)
de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990)
Dilworth, R.: A decomposition theorem for partially ordered sets. Annals of Mathematics 51(1), 161–166 (1950)
Fáry, I.: On straight-line representation of planar graphs. Acta Sci. Math. (Szeged) 11, 229–233 (1948)
Goodman, J.E., Pollack, R.: Allowable sequences and order types in discrete and computational geometry. In: New Trends in Discrete and Comp. Geom., pp. 103–134 (1993)
Gritzmann, P., Mohar, B., Pach, J., Pollack, R.: Embedding a planar triangulation with vertices at specified points. Amer. Math. Monthly 98(2), 165–166 (1991)
Kurowski, M.: A 1.235 lower bound on the number of points needed to draw all n-vertex planar graphs. Inf. Process. Lett. 92(2), 95–98 (2004)
Olaverri, A.G., Hurtado, F., Huemer, C., Tejel, J., Valtr, P.: On triconnected and cubic plane graphs on given point sets. Comput. Geom. 42(9), 913–922 (2009)
Pach, J., Agarwal, P.K.: Geometric graphs. In: Comb. Geom., pp. 223–239. Wiley (1995)
Ravsky, A., Verbitsky, O.: On Collinear Sets in Straight-Line Drawings. In: Kolman, P., Kratochvíl, J. (eds.) WG 2011. LNCS, vol. 6986, pp. 295–306. Springer, Heidelberg (2011)
Read, R.: A new method for drawing a planar graph given the cyclic order of the edges at each vertex. Congressus Numeration 56, 31–44 (1987)
Schnyder, W.: Embedding planar graphs on the grid. In: Johnson, D.S. (ed.) SODA, pp. 138–148. SIAM (1990)
Stein, S.K.: Convex maps. Proc. of the Amer. Math. Society 2(3), 464–466 (1951)
Thomassen, C.: Interval representations of planar graphs. J. of Comb. Theory, Series B 40(1), 9–20 (1986)
Tóth, C.D.: Axis-aligned subdivisions with low stabbing numbers. SIAM J. Discrete Math. 22(3), 1187–1204 (2008)
Tutte, W.T.: Convex representations of graphs. Proc. London Math. Soc. 10, 304–320 (1960)
Tutte, W.T.: How to draw a graph. Proc. London Math. Soc. 13, 743–768 (1963)
Wagner, K.: Bemerkungen zum vierfarbenproblem. Jahresbericht. German. Math.-Verein. 46, 26–32 (1936)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Angelini, P. et al. (2012). Universal Point Subsets for Planar Graphs. In: Chao, KM., Hsu, Ts., Lee, DT. (eds) Algorithms and Computation. ISAAC 2012. Lecture Notes in Computer Science, vol 7676. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35261-4_45
Download citation
DOI: https://doi.org/10.1007/978-3-642-35261-4_45
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35260-7
Online ISBN: 978-3-642-35261-4
eBook Packages: Computer ScienceComputer Science (R0)