Abstract
If a graph G contains no subgraph isomorphic to some graph H, then G is called H-free. A coloring of a graph G = (V,E) is a mapping c: V → {1,2,…} such that no two adjacent vertices have the same color, i.e., c(u) ≠ c(v) if uv ∈ E; if |c(V)| ≤ k then c is a k-coloring. The Coloring problem is to test whether a graph has a coloring with at most k colors for some integer k. The Precoloring Extension problem is to decide whether a partial k-coloring of a graph can be extended to a k-coloring of the whole graph for some integer k. The List Coloring problem is to decide whether a graph allows a coloring, such that every vertex u receives a color from some given set L(u). By imposing an upper bound ℓ on the size of each L(u) we obtain the ℓ-List Coloring problem. We first classify the Precoloring Extension problem and the ℓ-List Coloring problem for H-free graphs. We then show that 3-List Coloring is NP-complete for n-vertex graphs of minimum degree n − 2, i.e., for complete graphs minus a matching, whereas List Coloring is fixed-parameter tractable for this graph class when parameterized by the number of vertices of degree n − 2. Finally, for a fixed integer k > 0, the List k -Coloring problem is to decide whether a graph allows a coloring, such that every vertex u receives a color from some given set L(u) that must be a subset of {1,…,k}. We show that List 4-Coloring is NP-complete for P 6-free graphs, where P 6 is the path on six vertices. This completes the classification of List k -Coloring for P 6-free graphs.
This work has been supported by EPSRC (EP/G043434/1).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bonomo, F., Durán, G., Marenco, J.: Exploring the complexity boundary between coloring and list-coloring. Ann. Oper. Res. 169, 3–16 (2009)
Broersma, H., Fomin, F.V., Golovach, P.A., Paulusma, D.: Three Complexity Results on Coloring P k -Free Graphs. In: Fiala, J., Kratochvíl, J., Miller, M. (eds.) IWOCA 2009. LNCS, vol. 5874, pp. 95–104. Springer, Heidelberg (2009)
Broersma, H.J., Golovach, P.A., Paulusma, D., Song, J.: Updating the complexity status of coloring graphs without a fixed induced linear forest. Theoretical Computer Science 414, 9–19 (2012)
Erdös, P., Rubin, A.L., Taylor, H.: Choosabilty in graphs. In: Proc. West Coast Conference on Combinatorics, Graph Theory and Computing, pp. 125–157 (1979)
Golovach, P.A., Paulusma, D., Song, J.: 4-Coloring H-Free Graphs When H Is Small. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 289–300. Springer, Heidelberg (2012)
Hoàng, C.T., Kamiński, M., Lozin, V., Sawada, J., Shu, X.: Deciding k-colorability of P 5-free graphs in polynomial time. Algorithmica 57, 74–81 (2010)
Hopcroft, J.E., Karp, R.M.: An \(n^{\frac{5}{2}}\) algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2, 225–231 (1973)
Hujter, M., Tuza, Z.: Precoloring extension. II. Graph classes related to bipartite graphs. Acta Math. Univ. Comenianae LXII, 1–11 (1993)
Jansen, K.: Complexity Results for the Optimum Cost Chromatic Partition Problem. Universität Trier, Mathematik/Informatik, Forschungsbericht, pp. 96–41 (1996)
Jansen, K., Scheffler, P.: Generalized coloring for tree-like graphs. Discrete Appl. Math. 75, 135–155 (1997)
Král’, D., Kratochvíl, J., Tuza, Z., Woeginger, G.J.: Complexity of Coloring Graphs without Forbidden Induced Subgraphs. In: Brandstädt, A., Le, V.B. (eds.) WG 2001. LNCS, vol. 2204, pp. 254–262. Springer, Heidelberg (2001)
Kratsch, D., Müller, H.: Colouring AT-Free Graphs. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 707–718. Springer, Heidelberg (2012)
Kamiński, M., Lozin, V.V.: Coloring edges and vertices of graphs without short or long cycles. Contributions to Discrete Math. 2, 61–66 (2007)
Kubale, M.: Some results concerning the complexity of restricted colorings of graphs. Discrete Applied Mathematics 36, 35–46 (1992)
Marx, D.: Precoloring extension on unit interval graphs. Discrete Applied Mathematics 154, 995–1002 (2006)
Randerath, B., Schiermeyer, I.: 3-Colorability ∈ P for P 6-free graphs. Discrete Appl. Math. 136, 299–313 (2004)
Randerath, B., Schiermeyer, I.: Vertex colouring and forbidden subgraphs - a survey. Graphs Combin. 20, 1–40 (2004)
Schaefer, T.J.: The complexity of satisfiability problems. In: Proc. STOC 1978, pp. 216–226 (1978)
Stacho, J.: 3-Colouring AT-free graphs in polynomial time. Algorithmica 64, 384–399 (2012)
Tuza, Z.: Graph colorings with local restrictions - a survey. Discuss. Math. Graph Theory 17, 161–228 (1997)
Vizing, V.G.: Coloring the vertices of a graph in prescribed colors. Diskret. Analiz., no. 29, Metody Diskret. Anal. v. Teorii Kodov i Shem 101, 3–10 (1976)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Golovach, P.A., Paulusma, D., Song, J. (2012). Closing Complexity Gaps for Coloring Problems on H-Free Graphs. In: Chao, KM., Hsu, Ts., Lee, DT. (eds) Algorithms and Computation. ISAAC 2012. Lecture Notes in Computer Science, vol 7676. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35261-4_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-35261-4_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35260-7
Online ISBN: 978-3-642-35261-4
eBook Packages: Computer ScienceComputer Science (R0)