Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Closing Complexity Gaps for Coloring Problems on H-Free Graphs

  • Conference paper
Algorithms and Computation (ISAAC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7676))

Included in the following conference series:

Abstract

If a graph G contains no subgraph isomorphic to some graph H, then G is called H-free. A coloring of a graph G = (V,E) is a mapping c: V → {1,2,…} such that no two adjacent vertices have the same color, i.e., c(u) ≠ c(v) if uv ∈ E; if |c(V)| ≤ k then c is a k-coloring. The Coloring problem is to test whether a graph has a coloring with at most k colors for some integer k. The Precoloring Extension problem is to decide whether a partial k-coloring of a graph can be extended to a k-coloring of the whole graph for some integer k. The List Coloring problem is to decide whether a graph allows a coloring, such that every vertex u receives a color from some given set L(u). By imposing an upper bound ℓ on the size of each L(u) we obtain the ℓ-List Coloring problem. We first classify the Precoloring Extension problem and the ℓ-List Coloring problem for H-free graphs. We then show that 3-List Coloring is NP-complete for n-vertex graphs of minimum degree n − 2, i.e., for complete graphs minus a matching, whereas List Coloring is fixed-parameter tractable for this graph class when parameterized by the number of vertices of degree n − 2. Finally, for a fixed integer k > 0, the List k -Coloring problem is to decide whether a graph allows a coloring, such that every vertex u receives a color from some given set L(u) that must be a subset of {1,…,k}. We show that List 4-Coloring is NP-complete for P 6-free graphs, where P 6 is the path on six vertices. This completes the classification of List k -Coloring for P 6-free graphs.

This work has been supported by EPSRC (EP/G043434/1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bonomo, F., Durán, G., Marenco, J.: Exploring the complexity boundary between coloring and list-coloring. Ann. Oper. Res. 169, 3–16 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Broersma, H., Fomin, F.V., Golovach, P.A., Paulusma, D.: Three Complexity Results on Coloring P k -Free Graphs. In: Fiala, J., Kratochvíl, J., Miller, M. (eds.) IWOCA 2009. LNCS, vol. 5874, pp. 95–104. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Broersma, H.J., Golovach, P.A., Paulusma, D., Song, J.: Updating the complexity status of coloring graphs without a fixed induced linear forest. Theoretical Computer Science 414, 9–19 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Erdös, P., Rubin, A.L., Taylor, H.: Choosabilty in graphs. In: Proc. West Coast Conference on Combinatorics, Graph Theory and Computing, pp. 125–157 (1979)

    Google Scholar 

  5. Golovach, P.A., Paulusma, D., Song, J.: 4-Coloring H-Free Graphs When H Is Small. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 289–300. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Hoàng, C.T., Kamiński, M., Lozin, V., Sawada, J., Shu, X.: Deciding k-colorability of P 5-free graphs in polynomial time. Algorithmica 57, 74–81 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hopcroft, J.E., Karp, R.M.: An \(n^{\frac{5}{2}}\) algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2, 225–231 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hujter, M., Tuza, Z.: Precoloring extension. II. Graph classes related to bipartite graphs. Acta Math. Univ. Comenianae LXII, 1–11 (1993)

    MathSciNet  Google Scholar 

  9. Jansen, K.: Complexity Results for the Optimum Cost Chromatic Partition Problem. Universität Trier, Mathematik/Informatik, Forschungsbericht, pp. 96–41 (1996)

    Google Scholar 

  10. Jansen, K., Scheffler, P.: Generalized coloring for tree-like graphs. Discrete Appl. Math. 75, 135–155 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Král’, D., Kratochvíl, J., Tuza, Z., Woeginger, G.J.: Complexity of Coloring Graphs without Forbidden Induced Subgraphs. In: Brandstädt, A., Le, V.B. (eds.) WG 2001. LNCS, vol. 2204, pp. 254–262. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Kratsch, D., Müller, H.: Colouring AT-Free Graphs. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 707–718. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Kamiński, M., Lozin, V.V.: Coloring edges and vertices of graphs without short or long cycles. Contributions to Discrete Math. 2, 61–66 (2007)

    MATH  Google Scholar 

  14. Kubale, M.: Some results concerning the complexity of restricted colorings of graphs. Discrete Applied Mathematics 36, 35–46 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Marx, D.: Precoloring extension on unit interval graphs. Discrete Applied Mathematics 154, 995–1002 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Randerath, B., Schiermeyer, I.: 3-Colorability ∈ P for P 6-free graphs. Discrete Appl. Math. 136, 299–313 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Randerath, B., Schiermeyer, I.: Vertex colouring and forbidden subgraphs - a survey. Graphs Combin. 20, 1–40 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Schaefer, T.J.: The complexity of satisfiability problems. In: Proc. STOC 1978, pp. 216–226 (1978)

    Google Scholar 

  19. Stacho, J.: 3-Colouring AT-free graphs in polynomial time. Algorithmica 64, 384–399 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tuza, Z.: Graph colorings with local restrictions - a survey. Discuss. Math. Graph Theory 17, 161–228 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Vizing, V.G.: Coloring the vertices of a graph in prescribed colors. Diskret. Analiz., no. 29, Metody Diskret. Anal. v. Teorii Kodov i Shem 101, 3–10 (1976)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Golovach, P.A., Paulusma, D., Song, J. (2012). Closing Complexity Gaps for Coloring Problems on H-Free Graphs. In: Chao, KM., Hsu, Ts., Lee, DT. (eds) Algorithms and Computation. ISAAC 2012. Lecture Notes in Computer Science, vol 7676. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35261-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35261-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35260-7

  • Online ISBN: 978-3-642-35261-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics