Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On Almost Disjunct Matrices for Group Testing

  • Conference paper
Algorithms and Computation (ISAAC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7676))

Included in the following conference series:

Abstract

In a group testing scheme, a set of tests is designed to identify a small number t of defective items among a large set (of size N) of items. In the non-adaptive scenario the set of tests has to be designed in one-shot. In this setting, designing a testing scheme is equivalent to the construction of a disjunct matrix, an M ×N matrix where the union of supports of any t columns does not contain the support of any other column. In principle, one wants to have such a matrix with minimum possible number M of rows (tests). One of the main ways of constructing disjunct matrices relies on constant weight error-correcting codes and their minimum distance. In this paper, we consider a relaxed definition of a disjunct matrix known as almost disjunct matrix. This concept is also studied under the name of weakly separated design in the literature. The relaxed definition allows one to come up with group testing schemes where a close-to-one fraction of all possible sets of defective items are identifiable. Our main contribution is twofold. First, we go beyond the minimum distance analysis and connect the average distance of a constant weight code to the parameters of an almost disjunct matrix constructed from it. Next we show as a consequence an explicit construction of almost disjunct matrices based on our average distance analysis. The parameters of our construction can be varied to cover a large range of relations for t and N. As an example of parameters, consider any absolute constant ε > 0 and t proportional to N δ, δ > 0. With our method it is possible to explicitly construct a group testing scheme that identifies (1 − ε) proportion of all possible defective sets of size t using only \(O\Big(t^{3/2}\sqrt{ \log(N/\epsilon)}\Big)\) tests (as opposed to O(t 2logN) required to identify all defective sets).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Spencer, J.: The Probabilistic Method. Wiley & Sons (2000)

    Google Scholar 

  2. Berger, T., Mehravari, N., Towsley, D., Wolf, J.: Random multiple-access communications and group testing. IEEE Transactions on Communications 32(7), 769–779 (1984)

    Article  Google Scholar 

  3. Calderbank, R., Howard, S., Jafarpour, S.: Construction of a large class of deterministic sensing Matrices that satisfy a statistical isometry property. IEEE Journal of Selected Topics in Signal Processing 4(4), 358–374 (2010)

    Article  Google Scholar 

  4. Cheraghchi, M.: Improved Constructions for Non-adaptive Threshold Group Testing. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 552–564. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Chor, B., Fiat, A., Naor, M.: Tracing Traitors. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994)

    Google Scholar 

  6. Doob, J.L.: Stochastic Processes. John Wiley & Sons, New York (1953)

    MATH  Google Scholar 

  7. Du, D., Hwang, F.: Combinatorial Group Testing and Applications. World Scientific Publishing (2000)

    Google Scholar 

  8. Dyachkov, A., Rykov, V.: Bounds on the length of disjunctive codes. Problemy Peredachi Informatsii 18, 7–13 (1982)

    MathSciNet  Google Scholar 

  9. D’yachkov, A., Rykov, V., Macula, A.: New constructions of superimposed codes. IEEE Transactions on Information Theory 46(1) (2000)

    Google Scholar 

  10. Dyachkov, A., Rykov, V., Rashad, A.: Superimposed distance codes. Problems of Control and Information Theory 18(4), 237–250 (1989)

    MathSciNet  MATH  Google Scholar 

  11. Dyachkov, A., Vilenkin, P., Torney, D., Macula, A.: Families of finite sets in which no intersection of l sets is covered by the union of s other. Journal of Combinatorial Theory, Series A 99(2), 195–218 (2002)

    Article  MathSciNet  Google Scholar 

  12. Gilbert, A., Hemenway, B., Rudra, A., Strauss, M., Wootters, M.: Recovering simple signals (manuscript, 2012)

    Google Scholar 

  13. Gilbert, A., Iwen, M., Strauss, M.: Group testing and sparse signal recovery. In: Proc. 42nd Asilomar Conference on Signals, Systems and Computers (2008)

    Google Scholar 

  14. Hwang, F.: A method for detecting all defective members in a population by group testing. Journal of American Statistical Association 67, 605–608 (1972)

    Article  MATH  Google Scholar 

  15. Hwang, F., Sos, V.: Non-adaptive hypergeometric group testing. Studia Scient. Math. Hungarica. 22, 257–263 (1987)

    MathSciNet  MATH  Google Scholar 

  16. Kautz, W., Singleton, R.: Nonrandom binary superimposed codes. IEEE Transaction on Information Theory 10(4), 185–191 (1964)

    Article  Google Scholar 

  17. Macula, A., Popyack, L.: A group testing method for finding patterns in data. Discrete Applied Mathematics 144(1-2), 149–157 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Macula, A., Rykov, V., Yekhanin, S.: Trivial two-stage group testing for complexes using almost disjunct matrices. Discrete Applied Mathematics 137(1), 97–107 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Macwilliams, F., Sloane, N.: The Theory of Error-Correcting Codes. North-Holland (1977)

    Google Scholar 

  20. Malyutov, M.: The separating property of random matrices. Mathematical Notes 23(1), 84–91 (1978)

    Article  MATH  Google Scholar 

  21. Mazumdar, A., Barg, A.: Sparse-Recovery Properties of Statistical RIP Matrices. In: Proc. 49th Allerton Conference on Communication, Control and Computing, Monticello, IL, September 28–30 (2011)

    Google Scholar 

  22. McDiarmid, C.: On the method of bounded differences. In: Surveys in Combinatorics, Cambridge. London Math. Soc. Lectures Notes, pp. 148–188 (1989)

    Google Scholar 

  23. Ngo, H., Du, D.: A survey on combinatorial group testing algorithms with applications to DNA library screening. In: Discrete Mathematical Problems with Medical Applications. DIMACS Series Discrete Mathematics and Theoretical Computer Science, vol. 55, pp. 171–182 (1999)

    Google Scholar 

  24. Porat, E., Rothschild, A.: Explicit Non-adaptive Combinatorial Group Testing Schemes. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 748–759. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  25. R. Roth, Introduction to Coding Theory, Cambridge, 2006.

    Google Scholar 

  26. Staddon, J.N., Stinson, D.R., Wei, R.: Combinatorial properties of frameproof and traceability codes. IEEE Transaction on Information Theory 47(3), 1042–1049 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Stinson, D.R., Wei, R., Zhu, L.: Some new bounds for cover-free families. Journal of Combinatorial Theory, Series A 90(1), 224–234 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wolf, J.: Born again group testing: multiaccess communications. IEEE Transaction on Information Theory 31, 185–191 (1985)

    Article  MATH  Google Scholar 

  29. Yekhanin, S.: Some new constructions of optimal superimposed designs. In: Proc. of International Conference on Algebraic and Combinatorial Coding Theory (ACCT), pp. 232–235 (1998)

    Google Scholar 

  30. Zhigljavsky, A.: Probabilistic existence theorems in group testing. Journal of Statistical Planning and Inference 115(1), 1–43 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mazumdar, A. (2012). On Almost Disjunct Matrices for Group Testing. In: Chao, KM., Hsu, Ts., Lee, DT. (eds) Algorithms and Computation. ISAAC 2012. Lecture Notes in Computer Science, vol 7676. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35261-4_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35261-4_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35260-7

  • Online ISBN: 978-3-642-35261-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics