Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Newton-Schwarz Optimised Waveform Relaxation Krylov Accelerators for Nonlinear Reactive Transport

  • Conference paper
  • First Online:
Domain Decomposition Methods in Science and Engineering XX

Abstract

Krylov-type methods are widely used in order to accelerate the convergence of Schwarz-type methods in the linear case. Authors in [2] have shown that they accelerate without overhead cost the convergence speed of Schwarz methods for different types of transmission conditions. In the nonlinear context, the well-known class of Newton-Krylov-Schwarz methods (cf. [5]) for steady-state problems or timedependent problems uses the following strategy: time-dependent problems are discretised uniformly in time first and then one proceeds as for steady-state problems, i.e. the nonlinear problem is solved by a Newton method where the linear system at each iteration is solved by a Krylov-type method preconditioned by an algebraic Schwarz method. The major limitation is that NKS methods do not allow different time discretisations in the subdomains since the problem is discretised in time uniformly up from the beginning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Bibliography

  1. D. Bennequin, M. Gander, and L. Halpern. A Homographic Best Approximation Problem with Application to Optimized Schwarz Waveform Relaxation. Math. Comp., 78(265):185–223, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  2. E. Brakkee and P. Wilders. The Influence of Interface Conditions on Convergence of Krylov-Schwarz Domain Decomposition for the Advection-Diffusion Equation. Journal of Scientific Computing, 12: 11–30, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Brunauer, P. H. Emett, and E. Teller. Adsorption of Gases in Multimolecular Layers. Journal American Chemical Society, 60(2): 309–319, 1938.

    Article  Google Scholar 

  4. F. Caetano, L. Halpern, M. Gander, and J. Szeftel. Schwarz waveform relaxation algorithms for semilinear reaction-diffusion. Networks and heterogeneous media, 5(3):487–505, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  5. X. C. Cai, W. D. Gropp, D. E. Keyes, and M. D. Tidriri. Parallel implicit methods for aerodynamics. In In Keyes, pages 465–470. American Mathematical Society, 1994.

    Google Scholar 

  6. P. Cresta, O. Allix, C. Rey, and S. Guinard. Nonlinear localization strategies for domain decomposition methods: application to post-buckling analyses. CMAME, 196(8):1436–1446, 2007.

    MathSciNet  MATH  Google Scholar 

  7. R. Eymard, T. Gallouët, and R. Herbin. Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes sushi: a scheme using stabilization and hybrid interfaces. IMA Journal of Numerical Analysis, 30(4):1009–1043, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. J. Gander and L. Halpern. Optimized Schwarz waveform relaxation methods for advection reaction diffusion problems. SIAM J. Numer. Anal., 45(2):666–697, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  9. F. Haeberlein. Time-Space Domain Decomposition Methods for Reactive Transport Applied to CO 2 Geological Storage. PhD Thesis, University Paris 13, 2011.

    Google Scholar 

  10. F. Haeberlein, A. Michel, and L. Halpern. A test case for multi-species reactive-transport in heterogeneous porous media applied to CO2 geological storate. http://www.ljll.math.upmc.fr/mcparis09/Files/haeberlein_poster.pdf, 2009.

  11. J. Pebrel, C. Rey, and P. Gosselet. A nonlinear dual domain decomposition method: application to structural problems with damage. international journal of multiscale computational engineering, 6(3): 251–262, 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Haeberlein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Haeberlein, F., Halpern, L., Michel, A. (2013). Newton-Schwarz Optimised Waveform Relaxation Krylov Accelerators for Nonlinear Reactive Transport. In: Bank, R., Holst, M., Widlund, O., Xu, J. (eds) Domain Decomposition Methods in Science and Engineering XX. Lecture Notes in Computational Science and Engineering, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35275-1_45

Download citation

Publish with us

Policies and ethics