Summary
The BDDC algorithm is extended to a large class of discontinuous Galerkin (DG) discretizations of second order elliptic problems in two spatial dimensions. An estimate of C(1 + log(p 2 H ∕ h))2 is obtained for the condition number of the preconditioned system where C is a constant independent of p, h or H. Numerical simulations are presented which confirm the theoretical results
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Bibliography
P. Antonietti and B. Ayuso. Schwarz domain decomposition preconditioners for discontinuous Galerkin approximations of elliptic problems: Non-overlapping case. Math. Model. Numer. Anal., 41(1): 21–54, 2007.
D. Arnold, F. Brezzi, B. Cockburn, and D. Marini. Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal., 39(5):1749–1779, 2002.
F. Bassi and S. Rebay. A high-order discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys., 131:267–279, 1997.
F. Brezzi, G. Manzini, D. Marini, P. Pietra, and A. Russo. Discontinuous Galerkin approximations for elliptic problems. Numer. Meth. Part. D. E., 16(4):365–378, July 2000.
B. Cockburn and C.W. Shu. The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal., 35(6):2440–2463, December 1998.
L. Cowsar, J. Mandel, and M. Wheeler. Balancing domain decomposition for mixed finite elements. Math. Comp., 64(211): 989–1015, 1995.
Laslo T. Diosady and David L. Darmofal. A Unified Analysis of Balancing Domain Decomposition by Constraints for Discontinuous Galerkin Discretizations. SIAM J. Numer. Anal., 50(3):1695–1712, 2012.
Clark R. Dohrmann. A preconditioner for substructuring based on constrained energy minimization. SIAM J. Sci. Comput., 25(1):246–258, 2003.
M. Dryja, J. Galvis, and M. Sarkis. BDDC methods for discontinuous Galerkin discretization of elliptic problems. J. Complexity, 23(4): 715–739, 2007.
X. Feng and O.A. Karakashian. Two-level additive Schwarz methods for a discontinuous Galerkin approximation of second order elliptic problems. SIAM J. Numer. Anal., 39(4):1343–1365, 2002.
Axel Klawonn, Luca F. Pavarino, and Oliver Rheinbach. Spectral element FETI-DP and BDDC preconditioners with multi-element subdomains. Comput. Methods Appl. Mech. Engrg., 198:511–523, 2008.
J. Li and O.B. Widlund. FETI-DP, BDDC, and block Cholesky methods. Internat. J. Numer. Methods Engrg., 66:250–271, 2006.
Jan Mandel and Clark R. Dohrmann. Convergence of a balancing domain decomposition by constraints and energy minimization. Numer. Linear Algebra Appl., 10:639–659, 2003.
Jan Mandel and B. Sousedik. BDDC and FETI-DP under minimalist assumptions. Computing, 81:269–280, 2007.
L.F. Pavarino. BDDC and FETI-DP preconditioners for spectral element discretizations. Comput. Methods Appl. Mech. Engrg., 196(8): 1380–1388, 2007.
J. Peraire and P-O. Persson. The compact discontinuous Galerkin (CDG) method for elliptic problems. SIAM J. Sci. Comput., 30(4): 1806–1824, 2008.
X. Tu. A BDDC algorithm for flow in porous media with a hybrid finite element discretization. Electron. Trans. Numer. Anal., 26:146–160, 2007.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Diosady, L., Darmofal, D. (2013). BDDC for Higher-Order Discontinuous Galerkin Discretizations. In: Bank, R., Holst, M., Widlund, O., Xu, J. (eds) Domain Decomposition Methods in Science and Engineering XX. Lecture Notes in Computational Science and Engineering, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35275-1_66
Download citation
DOI: https://doi.org/10.1007/978-3-642-35275-1_66
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35274-4
Online ISBN: 978-3-642-35275-1
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)