Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Quasi-optimality of BDDC Methods for MITC Reissner-Mindlin Problems

  • Conference paper
  • First Online:
Domain Decomposition Methods in Science and Engineering XX

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 91))

  • 2098 Accesses

Abstract

The goal of this paper is to improve a condition number bound proven in [5] for a Balancing Domain DecompositionMethod by Constraints (BDDC) for the Reissner- Mindlin plate bending problem discretized with MITC elements. This BDDC preconditioner is based on selecting the plate rotations and deflection degrees of freedom at the subdomain vertices as primal continuity constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Bibliography

  1. K. J. Bathe. Finite Element Procedures in Engineering Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1982.

    Google Scholar 

  2. L. Beirão da Veiga. Finite element methods for a modified Reissner-Mindlin free plate model. SIAM J. Numer. Anal., 42(4):1572–1591, 2004a.

    Article  MathSciNet  MATH  Google Scholar 

  3. L. Beirão da Veiga. Optimal error bounds for the MITC4 plate bending element. Calcolo, 41(4):227–245, 2004b.

    Article  MathSciNet  MATH  Google Scholar 

  4. L. Beirão da Veiga, C. Lovadina, and L. F. Pavarino. Positive definite balancing Neumann-Neumann preconditioners for nearly incompressible elasticity. Numer. Math., 104(3):271–296, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  5. L. Beirão da Veiga, C. Chinosi, C. Lovadina, and L. F. Pavarino. Robust BDDC preconditioners for Reissner-Mindlin plate bending problems and MITC elements. SIAM J. Numer. Anal., 47(6):4214–4238, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  6. L. Beirão da Veiga, C. Chinosi, C. Lovadina, L. F. Pavarino, and J. Schöberl. Quasi-uniformity of BDDC preconditioners for the MITC Reissner-Mindlin problem. Technical Report 4PV11/2/0, I.M.A.T.I.-C.N.R., 2011.

    Google Scholar 

  7. F. Brezzi and M. Fortin. Mixed and hybrid finite element methods. Springer-Verlag, New York, 1991.

    Book  MATH  Google Scholar 

  8. F. Brezzi, M. Fortin, and R. Stenberg. Error analysis of mixed-interpolated elements for Reissner-Mindlin plates. Math. Models Methods Appl. Sci., 1 (2):125–151, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Chapelle and R. Stenberg. An optimal low-order locking-free finite element method for Reissner-Mindlin plates. Math. Models Methods Appl. Sci., 8(3):407–430, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  10. C. Chinosi, C. Lovadina, and L. D. Marini. Nonconforming locking-free finite elements for Reissner-Mindlin plates. Comput. Methods Appl. Mech. Engrg., 195(25–28):3448–3460, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  11. C. R. Dohrmann. A preconditioner for substructuring based on constrained energy minimization. SIAM J. Sci. Comput., 25(1):246–258, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  12. C. R. Dohrmann. A substructuring preconditioner for nearly incompressible elasticity problems. Technical Report SAND2004–5393, Sandia National Laboratories, 2004.

    Google Scholar 

  13. R. Durán and E. Liberman. On mixed finite element methods for the Reissner-Mindlin plate model. Math. Comp., 58(198):561–573, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. S. Falk and T. Tu. Locking-free finite elements for the Reissner-Mindlin plate. Math. Comp., 69(231):911–928, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Klawonn, L. F. Pavarino, and O. Rheinbach. Spectral element FETI-DP and BDDC preconditioners with multi-element subdomains. Comput. Methods Appl. Mech. Engrg., 198(3–4):511–523, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. H. Lee. Domain Decomposition Methods for Reissner-Mindlin Plates discretized with the Falk-Tu Elements. PhD thesis, Courant Institute, NYU, 2011.

    Google Scholar 

  17. J. Li and O. B. Widlund. FETI-DP, BDDC, and block Cholesky methods. Internat. J. Numer. Methods Engrg., 66(2):250–271, 2006a.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Li and O.B. Widlund. BDDC algorithms for incompressible Stokes equations. SIAM J. Numer. Anal., 44(6):2432–2455, 2006b.

    Article  MathSciNet  MATH  Google Scholar 

  19. C. Lovadina. A new class of mixed finite element methods for Reissner-Mindlin plates. SIAM J. Numer. Anal., 33(6):2457–2467, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  20. C. Lovadina. A low-order nonconforming finite element for Reissner-Mindlin plates. SIAM J. Numer. Anal., 42(6):2688–2705, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Mandel and C. R. Dohrmann. Convergence of a balancing domain decomposition by constraints and energy minimization. Numer. Linear Algebra Appl., 10(7):639–659, 2003. Dedicated to the 70th birthday of Ivo Marek.

    Google Scholar 

  22. J. Mandel, C. R. Dohrmann, and R. Tezaur. An algebraic theory for primal and dual substructuring methods by constraints. Appl. Numer. Math., 54 (2):167–193, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  23. L. F. Pavarino. BDDC and FETI-DP preconditioners for spectral element discretizations. Comput. Meth. Appl. Mech. Engrg., 196(8):1380–1388, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  24. L. F. Pavarino, Widlund O. B., and Zampini S. BDDC preconditioners for spectral element discretizations of almost incompressible elasticity in three dimensions. SIAM J. Sci. Comput., 32(6):3604–3626, 2010.

    Google Scholar 

  25. J. Pitkäranta and M. Suri. Upper and lower error bounds for plate-bending finite elements. Numer. Math., 84(4):611–648, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  26. J. Schöberl and R. Stenberg. Multigrid methods for a stabilized Reissner-Mindlin plate formulation. SIAM J. Numer. Anal., 47(4): 2735–2751, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  27. R. Stenberg. A new finite element formulation for the plate bending problem. In Asymptotic methods for elastic structures (Lisbon, 1993), pages 209–221. de Gruyter, Berlin, 1995.

    Google Scholar 

  28. X. Tu. A BDDC algorithm for a mixed formulation of flow in porous media. Electron. Trans. Numer. Anal., 20:164–179, 2005.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Beirão da Veiga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

da Veiga, L.B., Chinosi, C., Lovadina, C., Pavarino, L.F., Schöberl, J. (2013). Quasi-optimality of BDDC Methods for MITC Reissner-Mindlin Problems. In: Bank, R., Holst, M., Widlund, O., Xu, J. (eds) Domain Decomposition Methods in Science and Engineering XX. Lecture Notes in Computational Science and Engineering, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35275-1_76

Download citation

Publish with us

Policies and ethics