Abstract
The goal of this paper is to improve a condition number bound proven in [5] for a Balancing Domain DecompositionMethod by Constraints (BDDC) for the Reissner- Mindlin plate bending problem discretized with MITC elements. This BDDC preconditioner is based on selecting the plate rotations and deflection degrees of freedom at the subdomain vertices as primal continuity constraints.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Bibliography
K. J. Bathe. Finite Element Procedures in Engineering Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1982.
L. Beirão da Veiga. Finite element methods for a modified Reissner-Mindlin free plate model. SIAM J. Numer. Anal., 42(4):1572–1591, 2004a.
L. Beirão da Veiga. Optimal error bounds for the MITC4 plate bending element. Calcolo, 41(4):227–245, 2004b.
L. Beirão da Veiga, C. Lovadina, and L. F. Pavarino. Positive definite balancing Neumann-Neumann preconditioners for nearly incompressible elasticity. Numer. Math., 104(3):271–296, 2006.
L. Beirão da Veiga, C. Chinosi, C. Lovadina, and L. F. Pavarino. Robust BDDC preconditioners for Reissner-Mindlin plate bending problems and MITC elements. SIAM J. Numer. Anal., 47(6):4214–4238, 2010.
L. Beirão da Veiga, C. Chinosi, C. Lovadina, L. F. Pavarino, and J. Schöberl. Quasi-uniformity of BDDC preconditioners for the MITC Reissner-Mindlin problem. Technical Report 4PV11/2/0, I.M.A.T.I.-C.N.R., 2011.
F. Brezzi and M. Fortin. Mixed and hybrid finite element methods. Springer-Verlag, New York, 1991.
F. Brezzi, M. Fortin, and R. Stenberg. Error analysis of mixed-interpolated elements for Reissner-Mindlin plates. Math. Models Methods Appl. Sci., 1 (2):125–151, 1991.
D. Chapelle and R. Stenberg. An optimal low-order locking-free finite element method for Reissner-Mindlin plates. Math. Models Methods Appl. Sci., 8(3):407–430, 1998.
C. Chinosi, C. Lovadina, and L. D. Marini. Nonconforming locking-free finite elements for Reissner-Mindlin plates. Comput. Methods Appl. Mech. Engrg., 195(25–28):3448–3460, 2006.
C. R. Dohrmann. A preconditioner for substructuring based on constrained energy minimization. SIAM J. Sci. Comput., 25(1):246–258, 2003.
C. R. Dohrmann. A substructuring preconditioner for nearly incompressible elasticity problems. Technical Report SAND2004–5393, Sandia National Laboratories, 2004.
R. Durán and E. Liberman. On mixed finite element methods for the Reissner-Mindlin plate model. Math. Comp., 58(198):561–573, 1992.
R. S. Falk and T. Tu. Locking-free finite elements for the Reissner-Mindlin plate. Math. Comp., 69(231):911–928, 2000.
A. Klawonn, L. F. Pavarino, and O. Rheinbach. Spectral element FETI-DP and BDDC preconditioners with multi-element subdomains. Comput. Methods Appl. Mech. Engrg., 198(3–4):511–523, 2008.
J. H. Lee. Domain Decomposition Methods for Reissner-Mindlin Plates discretized with the Falk-Tu Elements. PhD thesis, Courant Institute, NYU, 2011.
J. Li and O. B. Widlund. FETI-DP, BDDC, and block Cholesky methods. Internat. J. Numer. Methods Engrg., 66(2):250–271, 2006a.
J. Li and O.B. Widlund. BDDC algorithms for incompressible Stokes equations. SIAM J. Numer. Anal., 44(6):2432–2455, 2006b.
C. Lovadina. A new class of mixed finite element methods for Reissner-Mindlin plates. SIAM J. Numer. Anal., 33(6):2457–2467, 1996.
C. Lovadina. A low-order nonconforming finite element for Reissner-Mindlin plates. SIAM J. Numer. Anal., 42(6):2688–2705, 2005.
J. Mandel and C. R. Dohrmann. Convergence of a balancing domain decomposition by constraints and energy minimization. Numer. Linear Algebra Appl., 10(7):639–659, 2003. Dedicated to the 70th birthday of Ivo Marek.
J. Mandel, C. R. Dohrmann, and R. Tezaur. An algebraic theory for primal and dual substructuring methods by constraints. Appl. Numer. Math., 54 (2):167–193, 2005.
L. F. Pavarino. BDDC and FETI-DP preconditioners for spectral element discretizations. Comput. Meth. Appl. Mech. Engrg., 196(8):1380–1388, 2007.
L. F. Pavarino, Widlund O. B., and Zampini S. BDDC preconditioners for spectral element discretizations of almost incompressible elasticity in three dimensions. SIAM J. Sci. Comput., 32(6):3604–3626, 2010.
J. Pitkäranta and M. Suri. Upper and lower error bounds for plate-bending finite elements. Numer. Math., 84(4):611–648, 2000.
J. Schöberl and R. Stenberg. Multigrid methods for a stabilized Reissner-Mindlin plate formulation. SIAM J. Numer. Anal., 47(4): 2735–2751, 2009.
R. Stenberg. A new finite element formulation for the plate bending problem. In Asymptotic methods for elastic structures (Lisbon, 1993), pages 209–221. de Gruyter, Berlin, 1995.
X. Tu. A BDDC algorithm for a mixed formulation of flow in porous media. Electron. Trans. Numer. Anal., 20:164–179, 2005.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
da Veiga, L.B., Chinosi, C., Lovadina, C., Pavarino, L.F., Schöberl, J. (2013). Quasi-optimality of BDDC Methods for MITC Reissner-Mindlin Problems. In: Bank, R., Holst, M., Widlund, O., Xu, J. (eds) Domain Decomposition Methods in Science and Engineering XX. Lecture Notes in Computational Science and Engineering, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35275-1_76
Download citation
DOI: https://doi.org/10.1007/978-3-642-35275-1_76
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35274-4
Online ISBN: 978-3-642-35275-1
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)